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376 R. M. DAVIES ON A CRITICAL

The radial displacement, or the longitudinal displacement at the end of the bar remote from the
applied pressure, is used to produce a change in the capacity of a suitable condenser unit which is
charged to a high potential and connected through a feed circuit and an amplifier to a double-beam
cathode-ray oscillograph. The change in capacity of the condenser unit gives rise to a vertical
deflexion of one of the beams of the oscillograph, the other beam being used for time-marking.
At the appropriate instant, the two beams are traversed rapidly in a horizontal direction across the
screen by a sweep circuit triggered by a switch on the pressure bar. By photographing the traces
on the screen, an oscillogram, giving the variation with time of the displacement in the bar, is
obtained, and from this record the variation of the applied pressure with time can be deduced.

The second part of the paper (§§ 10 to 12) begins with a theoretical discussion of the propagation
of extensional stress waves and pulses in a bar, using the exact equations duc to Pochhammer and to
Chree (§ 11), and also a less accurate wave equation due apparently to Love (§ 12). These investiga-
tions show that, owing to dispersion, a stress pulse is modified in its passagc down the bar, the
shorter waves lagging behind the longer ones. The theory provides a satisfactory explanation of
certain features of the experimental results which are incompatible with elementary theory. It is
found, for example, by the theory of group velocities, that a pulse whose initial duration is very
short, becomes extended as it travels along the bar, its duration at distance x cm. from the origin
being about 3-3x usec. In the early stages of the disturbance, extending for the first 1-4x ysec., only
one dominant group exists; the later portion, extending over 1-9x gsec., is composed of two dominant
groups which give the characteristic pattern of two superposed oscillations. These conclusions are
confirmed by experiment.

The theory is used to discuss the errors in the experiments caused by the pressure bar itself, and
it is shown that bars about 2 ft. long and 1 in. and 0-5 in. diameter can be used to measure pres-
sures which last for about 20 and 10 usec. respectively with an accuracy of about 2 to 3 %,. This
was confirmed by experiments with bullet impacts and detonation waves in gaseous mixtures, in
which the measured values of the pressure could be checked by calculation.

LisT oF SYMBOLS

A4 area of cross-section of a pressure bar (general); amplitude of vibra-
tion (§11).

A’ area of application of a force on the pressure end of the bar.

radius of a pressure bar.

a’ internal radius of the insulated cylinder of a cylindrical condenser unit.

C,C, ... capacity (general).

C amplitude of vibration (§11).

¢ c, phase and group velocities respectively of longitudinal waves of wave-
length 4 in a bar.

¢y ¢y phase and group velocities respectively of flexural waves of wave-
length 4 in a bar.

¢y (= J[E/r]) velocity of longitudinal waves of infinite wave-length in a bar.

D separation of the plates of a parallel-plate condenser unit.

d distance between the axes of the cylinders in an eccentric cylindrical
condenser; thickness of the plates of a parallel plate condenser.

K Young’s modulus.

E, c.m.f. used to polarize the condenser units.

E,E,,... various e.m.f.’s and p.d.’s.

¢ extension of a pressure bar under a static load.

JieoSs functions of ¢, a/4 and r/a, defined by equations (11-84) to (11-11a).
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parameter of dimension of time (see equation (12-4)).
parameter defined in table 11-4. '

current (general); ./—1 (§§11 and 12).

radius of gyration of the cross-section of a bar about the axis.

~ radius of gyration of the cross-section of a bar about an axis defined in

appendix 3.

capacity per unit length of a coaxial cylindrical condenser.

capacity per unit length of a cylindrical condenser whose axes are
parallel, but not coincident.

constant used in connexion with figures 26 and 27.

self-inductance (general); overlap of cylindrical condenser unit
(appendix 1).

a length defined in appendix 1.

the length of a pressure bar.

the length of a bullet.

mass of a pressure bar (general) ; mutual inductance (§8).

mass per unit area of a pressure bar.

constants in equation (12-8).

a positive integer (§§ 11 and 12).

pressure (force per unit area) applied to the pressure end of a bar.

pressure (force per unit area) in a stress wave in a bar; a positive number
in the Laplace transform.

pressure derived from the (displacement, time) curve of a distortionless
bar.

electric charge (general); a positive number in a Laplace transform.

resistance.

a non-dimensional constant defined in appendix 3.

distance measured at right angles to the axis of a cylinder.

radial stress in a longitudinal stress wave (general case).

parameter defined in table 11-4.

parameter in the trapezium-shaped wave of §11.

period of a longitudinal wave of wave-length 4, velocity ¢, in a bar.

duration of a stress pulse.

time taken by a wave of velocity ¢, to traverse the radius, 4, of a bar.

period of longitudinal vibration of a tree-free bar in the fundamental
mode.

period of pressure bar swinging as a ballistic pendulum.

period of a dominant group.

period of a timing wave in an oscillogram.

time, reckoned from the instant of arrival of a stress pulse at the mea-
suring end of a bar.

time, reckoned from the instant of departure of a stress pulse from the
pressure end of a bar.

initial velocity of swing of a pressure bar after a blow.
47-2
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velocity of impact of a bullet.

displacement and particle velocity in a stress wave when the stress is
one-dimensional.

longitudinal and radial displacement in a stress wave in the general case.

lateral displacement in a flexural wave.

Laplace transform of .

p.d. across the input terminals of the amplifier due to the change in
capacity of a condenser unit.

p.d.

the imaginary variable.

horizontal distance measured on a photographic plate.

the ballistic throw of a pressure bar.

axis of a pressure bar.

longitudinal stress and radial shear stress in a longitudinal wave
(general case).

vertical distance measured on a photographic plate.

defined in table 11-4.

a parameter of dimension (length)~! defined in equation (5-14).

a parameter of dimension (e.m.f.)~!; (see equation (5-10)).

amplitude of nth Fourier component in a periodic disturbance of
arbitrary form.

change in capacity of a bar condenser unit (general); 27/4 (see table
11-4 and appendix 3); real positive variable connected with the
Laplace transform.

change in capacity of a cylindrical unit, due to the radial and longi-
tudinal displacements of the bar (appendix 1).

vertical deflexion of the recording spot of the oscillograph, measured
on the photographic plate. '

a non-dimensional parameter defined in appendix 3.

radial displacement at the cylindrical surface of a bar.

parameter defined in table 11-4.

wave-length of a longitudinal wave in a bar.

roots of the characteristic equation (general).

complex variable (§12).

modulus of rigidity (general).

functions defined in equations (11-13) to (11-15).

a constant factor used in connexion with similarity relationships.

displacement and velocity of the measuring end of a pressure bar.

displacement and velocity of the measuring end of a pressure bar free
from distortion.

density of a pressure bar.

density of a bullet.

Poisson’s ratio (general); magnetic leakage factor (§8).

time constants.



STUDY OF THE HOPKINSON PRESSURE BAR 379

) correction term for the non-uniform distribution of the electric field in
a parallel plate condenser.

P, phase of the nth Fourier component in a periodic disturbance of
arbitrary form.

¥ (= wHcyfl) non-dimensional parameter (see equation (12-11)).

17 2 (frequency).

w, 2m (frequency of the nth Fourier component in a periodic disturbance

of arbitrary form).

1. INTRODUCTION

The accurate measurement of large pressures subject to very rapid changes presents a number
of difficulties. Ordinary mechanical gauges which can withstand high pressures (say of
order 5 to 25 tons/sq.in.) are severely limited by their free periods, and when dealing with
changes of pressure taking place in times of the order of, say, 10 usec. (1 gsec. = 10~6sec.)
their readings are false. Piezo-electric gauges will faithfully record pressures which change
in times of order 10 gsec., but their use is limited to the measurement of comparatively low
pressures on account of the fragility of the piezo-electric crystal elements which they contain.

The most satisfactory method so far developed for dealing with the problem seems to be
the pressure-bar method, devised originally by Hopkinson (1914) and developed by Robert-
son (1921) and by Landon & Quinney (1923). In this method, the pressure to be measured
is applied normally to one end (the ‘pressure’ end) of a cylindrical steel bar; the magnitude
of the pressure is deduced from measurement of the momentum trapped in detachable
end-pieces wrung to the other end (the ‘measuring’ end) of the bar.

This apparatus is able to withstand high pressures (up to 60 tons/sq.in. or more with
suitable steel), whilst pressure pulses are propagated along the bar without change of form
so far as they can be regarded as travelling with velocity ¢, = \/(E/p), where E is the Young’s
modulus and p the density of the material of the bar. On this hypothesis, if the bar is so long
that the whole pressure to be recorded is over before the pulse has had time to traverse the
bar twice, the bar itself does not distort the pulse; analysis of the motion of the measuring
end of the bar will thus give a true representation of events occurring at the pressure end at
time [/cysec. earlier, if / is the length of the bar.

Apart from any theoretical limitations associated with the distortion of a pressure pulse
as it is propagated along a bar, the original Hopkinson method suffers from two disadvan-
tages. On the one hand, the inevitable adhesion between the detachable end-pieces and
the bar makes it difficult to obtain accurate results when the pressure is less than about
3 tons/sq.in. On the other hand, whereas the method can be used satisfactorily to measure
maximum pressures and, with more difficulty, to measure the time during which the
pressure exceeds any given value, it cannot give the relation between pressure and time.

This paper describes a development of the Hopkinson bar which retains the advantages
of the original method and, at the same time, enables much smaller pressures to be measured
and the relation between pressure and time to be determined. This new method consists
in measuring electrically the variation with time ¢ of either the longitudinal displacement £
of the measuring end of the bar, or, alternatively, the radial displacement { of the cylindrical
surface of the bar.



380 R. M. DAVIES ON A CRITICAL

Considering the longitudinal displacement, &, let p and # be respectively the pressure and
the particle velocity in the longitudinal elastic wave produced in the bar by the applied
pressure. Then
b = pcyi. (1-1)

At the measuring end of the bar, because of the reflexion of the elastic wave, the velocity
¢ of the end is double the particle velocity #, and therefore

£ = 24 = 2p/pc,. (1-2)

By differentiating the measured (,#) curve, { is found and p is then determined by means
of equation (1-2).

Considering next the radial displacement {, if @ is the radius of the bar and ¢ the Poisson’s

ratio of the material of the bar, then

: {=oap|E. (1-3)
It follows that if the ({, £) curve is determined experimentally, the (p, f) curve can be derived
from it by multiplying the ordinates by the factor sa/E.

At this point it is worth noticing the smallness of the magnitude of the quantities to be
measured when the pressure pulse is produced in a bar 1in. diameter by the impact of a
0-22 lead bullet of length 0-9 cm. = 0-228 in. The approximate values of §, { and the time of
impact, together with other quantities associated with the pulses, are given in table 1-1.

TaBLE 1-1. DIAMETER OF BAR = 1 IN.

1) 2)

velocity of bullet (ft./sec.) 700 1200
duration of impact (usec.) 42 25
length of the pulse in the steel bar: in. 86 5-0
cm. 22 13
maximum value of the total thrust produced by the impact on the end 1-3 3-8
of the bar (tons)
maximum pressure over the area of contact of bullet and bar (tons/sq.in.) 34 100
maximum pressure in the bar: tons/sq.in. 1-6 4-8
dynes/sq.cm. 2:5 %108 7-5x 108
maximum velocity of the end of the bar (cm./sec.) 126 372
total longitudinal displacement of the end of the bar (cm.) 0-0042 0-0093
maximum radial displacement at the cylindrical surface (cm. x 10-%) 4-7 14

The original Hopkinson method and the new electrical methods are subject to three
limitations, arising from the assumptions on which they are based and inherent in every
method involving the propagation of a pulse along a bar of finite diameter.

(1) The equations (1-1) to (1-3), like the fundamental equations of the original method,
assume that the waves propagated in the bar are elastic waves, i.e. the stress at every point
in the bar must always lie within the region where the (stress, strain) curve is linear and
reversible. With a given bar, this implies that there is an upper limit to the stress that can
be measured with it, this limit being determined by the elastic and plastic properties of the

material composing the bar.
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(2) A second assumption common to the methods is that a pressure pulse is propagated
without distortion. This assumption is only true when the wave-lengths of the elastic waves
concerned in the propagation of the pulse are large compared with the lateral dimensions
of the bar; when this condition is not fulfilled, the waves suffer dispersion and the form of
the pulse is distorted as it travels along the bar.

The distortion of periodic disturbances and of pulses has been investigated theoretically
and the results are given later (see §§ 11, 12); in the meantime it may be stated that experi-
ment and theory tend to show that with bars about 2ft. long and 1 and 0-5in. diameter,
pressures, which last only for 20 and 10 usec. respectively, can be measured electrically with
reasonable accuracy. Although this theoretical investigation is primarily concerned with
the electrical methods of using the bar, some of the results are applicable to the mechanical
methods. At some future date it may perhaps be worth while to make a more detailed
investigation of the latter methods, based on the theory developed in §§ 10 to 12 below.

(3) A third assumption implicit in the methods is that the pressure in the pulse is uniformly
distributed over the cross-section of the bar, even when the force acting on the pressure end
is concentrated over a small area surrounding the centre. In the neighbourhood of the
pressure end, this assumption is certainly not true, but experiments in which the end-pieces
of the original method are replaced by small steel balls show that this uniform distribution
of pressure does occur provided that the duration of the pulse due to the applied pressure
is not so small that dispersion is important and provided that the length of the bar is more
than four diameters. Under these conditions, if P is the applied pressure, assumed uniformly
distributed over an area 4’ of the pressure end of the bar, then

p=PA'|A, (1-4)

where 4 is the area of cross-section of the bar.

This paper falls naturally into three parts—the description of the apparatus and the
experimental technique in §§2 to 9, the investigation of the theoretical limitations of the
methods and the discussion of the accuracy of the results in §§10 to 12, and the detailed
discussion of some points in the theory of the electrical parts of the-apparatus in the
appendices.

The experimental part of the paper is confined to the description of the determination
of pressure from measurements of the longitudinal displacement {; the theoretical part,
however, includes a discussion of the errors when the radial displacement is measured.

2. GENERAL DESCRIPTION OF THE METHOD

The longitudinal displacement § of the surface of the measuring end of the pressure bar
is measured by using it as the earthed conductor of either a parallel plate or a cylindrical
condenser (the ‘bar’ condenser). In the first case, the insulated conductor of the condenser
consists of a brass plate parallel to the end-surface, and, in the second case, of a length of
brass tube coaxial with the bar. In either case, the insulated conductor is part of a ‘ condenser
unit’ which enables this conductor to be supported elastically with respect to the pressure
bar so that two conditions are fulfilled:

(1) During any slow movements of the bar, the two conductors move together so that
there is no displacement of one relative to the other.
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(2) During the rapid motion of the measuring end of the bar due to an impulse at the
pressure end, the surface of the measuring end moves freely whilst the insulated conductor
remains instantaneously at rest.

With this arrangement, a force applied to the pressure end of the bar will give rise to a
change in the capacity of the bar condenser. By charging this condenser to a high voltage
through a ‘condenser feed-unit’ which contains a condenser-resistance arrangement of
high time constant, the charge on the bar condenser will be constant for small time intervals,
and the change in its capacity will therefore be accompanied by a change in the potential
difference (p.d.) between its conductors. This change in p.d. is amplified and recorded
photographically with a cathode-ray oscillograph (c.r.o.) unit; the tube in this unit is of the
‘double-beam’ type, i.e. it has a system of deflecting plates which, by the application of
suitable bias potentials, forms two spots on the oscillograph screen. These spots have identical
horizontal motions, and at the same time they can be given independent vertical deflexions.

PRESSURE BAR BAR CONDENSER

SUSPENDED BALLISTICALLY OR RING SWITCH UNIT
PRESSURE TO
1
by RESTING ON RUBBER~ ™ \
— ] . 7 p—
7 -t A

g
SWEEP | CONDENSER

UNIT FEED UNIT

AMPLIFIER

—

CATHODE RAY

R.F. OSCILLOGRAPH
OSCILLATOJEJ

Ficure 1. General arrangement of the apparatus.

The general arrangement of the apparatus is shown schematically in figure 1, which shows
the condenser unit on the pressure bar connected to the c.r.o. through the amplifier and the
condenser feed-unit. The amplified transient p.d. across the bar condenser due to a force at
the pressure end of the bar is used to produce a vertical motion of one of the beams of the
c.r.o. The vertical motion of the other beam is produced by the output from an oscillator
of known frequency; this beam is used for giving the time scale of the record.

The horizontal motion of the oscillograph spots is produced by a sweep unit triggered by
a switch on the pressure bar. Initially, the oscillograph spots are at rest on the left of the
screen; they are then made to move horizontally to the right at high speed until they reach
the extreme position of the sweep, whence they return at a slower speed towards their initial
position. This type of sweep is obtained by using the transient p.d. produced across the
secondary circuit of a transformer due to the establishment of a current in the primary circuit.
Since bright stationary spots will destroy the c.r.o. screen and will fog the photographic
plate used for recording, it is necessary to arrange that the brightness of the spots is small
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when they are at rest and that they are modulated up to full intensity when they are in
motion; to effect this, a voltage pulse, similar in form to the time-sweep pulse, is applied to
the modulating grid of the oscillograph.

Normally the effects to be measured are of very short duration—as little as 25 usec. in
some instances. This means that the horizontal sweep must be synchronized with the
transient p.d. across the bar condenser, so that the spots start their horizontal traverse just
before the beginning of the motion of the measuring end of the bar. This requirement is
met by arranging that the stress wave in the pressure bar, due to the applied pressure, breaks
the ring switch shown on the bar in figure 1. This switch consists of an insulated brass ring
mounted on a brass tube which can slide freely on the pressure bar; normally the ring is
earthed, being held by thin rubber bands against three short brass studs which are screwed
into the bar. When the stress wave due to the force applied at the pressure end reaches the
studs, contact between them and the ring is momentarily broken, since the studs move
forward whilst the ring, because of its inertia, remains instantaneously at rest. The ring
switch forms part of the sweep circuit which contains a gas-filled relay valve which is
normally non-conducting and which becomes conducting when the switch is broken; this
initiates the horizontal traverse of the spots and simultaneously increases their intensity. The
time between the beginning of the horizontal motion of the oscillograph spots and the arrival
at the oscillograph of the amplified transient p.d. from the bar condenser is determined by
the time lag in the electrical circuits, by the delay in the action of the ring switch, and by
the time taken by the elastic wave in the pressure bar to travel from the switch to the bar
condenser. By varying the distance between the ring switch and the end of the bar, it is
possible to arrange that the vertical motion of the recording spots starts at a suitable time
after the beginning of the horizontal motion.

The traces of the fluorescent spots on the screen of the c.r.o. are photographed using a
stationary plate camera, and the experimental results are deduced from analysis of these
records which are measured with a Hilger travelling microscope fitted with two independent
motions at right angles to one another and reading directly to 0-01 mm.

3. THE PRESSURE BAR

The stress waves set up in the pressure bar by the application of a force at the pressure
end are assumed to be elastic waves, and it is therefore essential to make certain in any given
experiment that the material of the bar is homogeneous and is nowhere stressed beyond the
limit of proportionality. The majority of the bars used in this work have been made from
bright, annealed tool steel, with a limit of proportionality of 30 to 40 tons/sq.in.; for most
purposes this limit is high enough and, at the same time, bars obtainable commercially are
reasonably homogeneous, uniform in diameter, and they can be sawn, drilled, tapped and
ground with reasonable ease.

In many cases it is possible to protect the pressure end of the bar by using an anvil con-
sisting of a short length of hardened alloy steel, equal in diameter to the bar; the front
surface of the anvil is exposed to the pressure to be measured and the back surface is ground
flat and lapped, and wrung with a slight smear of grease to the surface of the bar, which is
similarly ground plane and lapped. A well-made joint of this type will transmit an elastic
wave without distortion.

Vol. 240. A. 48
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In experiments involving bullet impacts, the gun is placed some distance away from the
pressure end of the bar and the bullet passes through a directing cone before striking the bar.
This cone consists of a steel cylinder machined so that the internal surface consists of a trun-
cated cone followed by a cylinder whose internal diameter is equal to the calibre of the rifle
(0-221in.). The axial length of the truncated cone is 3in., the diameter of the larger end is
about £ in. and the length of the cylindrical portion is about 11in.

The directing cone ensures that the projectile strikes the end surface of the pressure bar
accurately when the apparatus has been carefully set up. It also helps to reduce the dis-
turbing effect of blast from the rifle on ballistic measurements, since it allows the rifle to
be placed at a sufficient distance from the pressure bar to enable the blast to expand laterally
so as to give no forward momentum to the bar.

The factors which determine the minimum length of bar to be used in any given circum-
stance have been stated in § 1. In the present work, bars ranging in length from 2 to 22 ft.
have been used; with a force uniformly distributed over the pressure end, the bars are
capable of dealing with pressures which last for 2-4 x 10~* and 2-6 x 1073 sec. respectively.

For most purposes, bars of diameter 0-5, 1 and 1-5in. are suitable. The smaller the
diameter of the bar, the less is the distortion of the elastic waves in the bar due to dispersion,
but the diameter cannot be reduced indefinitely since the sensitivity of the apparatus
decreases when the diameter of the bar decreases. The minimum pressures which can be
measured with reasonable accuracy are about 0-05 ton/sq.in. with a bar 1-5in. diameter,
about 0-1 ton/sq.in. with a bar 1lin. diameter and about 0-3 ton/sq.in. with a bar 0-5in.
diameter.

When it is necessary to use the bar as a ballistic pendulum, it is hung by two bifilar
suspensions; in this case all electrical connexions to the bar are made by thin flexible wires
arranged so as not to disturb the motion; when measurements of momentum are not
required, the bar can be supported on rubber in V-blocks.

In order to deduce the pressure from the observed (&, ¢) curve, it is necessary to know the
values of p and ¢, (see equation (1-2)); because of the variability of tool steel, these quantities
were determined for each pressure bar. The value of ¢, was found by a dynamical method,
and for this purpose the bar of length / was supported on two knife-edges each at a distance
0-25/ from the ends, i.e. at the nodes appropriate to the stationary vibrations of a free-free
bar in its first overtone of frequency ¢,/l. One end of the bar was placed near an electro-
magnet with two windings, one carrying d.c. to magnetize the bar whilst the other was fed
with variable-frequency a.c., generated by a beat-frequency oscillator whose signal was
amplified by an audio-frequency amplifier with an output of 30 W. The bar was set in
resonant vibration by varying the frequency of the oscillator, and, since the bar was magne-
tized, the frequency of its vibration was then equal to the known frequency of the oscillator.
From this frequency and the length of the bar, the value of ¢, was calculated.

4. THE BAR CONDENSER UNITS
The method of attachment of the insulated conductor of the bar condenser to the bar

itself must fulfil the requirements stated in § 2.
Figure 2 shows in elevation the construction of the parallel-plate unit used with a bar
Lin. diameter. In this diagram, 4 represents the steel pressure bar, the end-surface being
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ground plane. The brass disk B is the insulated plate of the condenser, and it is mounted
centrally in the ebonite disk C which is connected elastically by a rubber ring D to the ebonite
ring E; the joints between the rubber ring and the ebonite disk C and ebonite ring £ are made
with sealing wax, and a number of holes are bored in the rubber to allow free passage of air.
The ebonite ring E is firmly fixed to a brass tube F which can make contact with the pressure
bar over the two cylindrical surfaces G, G; these portions are scraped so that their internal
diameter exceeds the external diameter of the bar by about 0-001 in., thus making the sleeve
an easy piston fit on the bar.

3-N2 8 B.A.SCREWS

ﬁi\mmc BRASS
NWALS
H Y %

Ficure 2. The parallel-plate condenser unit.

When the end 4 of the pressure bar moves forward under the action of a pressure pulse,
the tube F and its attachments remain stationary because of their inertia, whilst the smallness
of the clearance between the tube and the bar ensures that the insulated disk remains
parallel to the end of the bar; at the same time, the clearance is sufficient to allow free motion
of F and its attachments. As an extra precaution, the rubber ring D is inserted between the
ebonite disks C and E; it makes the period of the system, D, B and C, sufficiently long to
ensure that B remains sensibly at rest irrespective of what happens between 4 and F during
the very short time of motion of the end of the bar.

The distance between the end-surface of the bar and the disk B is normally between 0-01
and 0-04in., depending on the displacement to be measured. The disk can be set at a given
distance from the end of the bar by means of a narrow brass ring H, which is screwed to the
bar, and a removable brass half-ring (not shown in the diagram) which acts as a gauge. By
placing the gauge between F and H, then pressing £ so as to make contact on both sides of
the gauge, and finally removing the gauge, the gap between the insulated plate and the
end of the bar is set to a given value and the tube F is left free to move on the bar.

In practice, it is convenient to arrange that the gap between B and the end of the bar is
between ten and thirty times the displacement of the end of the bar due to the pressure to
be measured; at the same time, the gap should be at least 0-01 in. in order to avoid errors
in setting it.

The cylindrical condenser units are constructed on the same principles as the parallel-
plate units, and the construction of a unit for use with a bar 1-5in. diameter is shown in
elevation in figure 3. The insulated conductor consists of a brass cylinder 4 which is insulated
by the mica plates B and supported elastically relative to the pressure bar by the system
consisting of the brass sleeve G, the ebonite ring F, the outer earthed brass cylinder £ and
the short rubber cylinders C. The internal diameter of the sleeve G is about two-thousandths

of an inch greater than the diameter of the pressure bar, so that the unit as a whole can slide
48-2
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freely on the bar. The adjusting screws pressing the brass disks D are carefully set so that the
insulated cylinder is coaxial with the sleeve G. In the unit shown in the diagram, the dia-
meter of the insulated cylinder is § in. greater than the diameter of the pressure bar; a con-
denser unit with these dimensions can be used with the apparatus described below to measure
displacements of the order of 2 mm.

£, EARTHED BRAS5 CYLINDER D, 8rass pisks (3 seTs at 120°)
F, EBoNITE RING
G, BRASS SLEEVE

<
i
s _—
— _ PRESSURE BAR.

\———— (EARTHED)

]_C, RUBBER CYLINOERS
: (3 seTs AT 120%)

\_B, MICA PLATES (3 AT 120°)

N-A, INSULATED CYLINOER

E EARTHING WIRE

CONDENSER FEED UNIT

Ficure 3. The cylindrical condenser unit.

- When a force is applied to the pressure end of the bar, the longitudinal wave of compres-
sion, travelling towards the measuring end, causes lateral expansion of the bar, and since
this wave is reflected as a longitudinal wave of extension, lateral contraction of the bar will
accompany the extension. It follows that the change in the capacity of a cylindrical con-
denser unit of this type is caused by (i) the change in the length of the common portion of
the bar and the insulated cylinder due to the longitudinal waves of compression and exten-
sion, and (ii) the change in the radius of the bar due to its lateral expansion and contraction.
The response of a cylindrical condenser unit when the two effects are present is discussed
in appendix 1, where it is shown that the results are difficult to interpret unless the second
effect is small in comparison with the first; the gap between the bar and the insulated
conductor must therefore be large. For this reason, the sensitivity of this type of unit is
small in comparison with that of the parallel-plate type; on the other hand, the cylindrical
unit can be used to measure displacements which are too large to be measured with the
parallel-plate unit, and the unit shown in figure 3 has been used successfully to measure the
pressure due to an underwater explosion where the maximum pressure was about 35 tons/
sq.in. and the displacement of the end of the bar about 025 cm., i.e. about 0-1in.

5. THE THEORY OF THE METHOD

The electrical circuit, the condenser feed-unit of figure 1, which is associated with the
condenser unit, is shown in figure 4, in which the condenser C represents the bar condenser
whose initial capacity is normally of order 10 #uF. The lower plate of C'is the earthed surface
of the pressure bar and the upper plate is the insulated conductor of the condenser unit.
The insulated plate of C'is connected through a high resistance R, 50 M, to a dry battery
of em.f. £, which can be set to values lying between 200 and 1000 V. The insulated plate
of C'is also connected through a condenser C, 0-1 4F, to the shunt capacity C; and the shunt
resistance R, which are in parallel with the input terminals of the amplifier. Itis essential that
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all parts of this circuit, together with the leads to the amplifier, should be adequately screened
to avoid pick-up from extraneous sources. The shunt capacity C; is made up of the input
capacity of the amplifier, the capacity of the screened lead to the amplifier and the capacity
of any loading condensers which are used to bring up the time constant C; R, to the value
required in a particular experiment; usually C; exceeds 1000 zuF. The shunt resistance R,
consists of the leakage resistance of the screened lead to the amplifier—which is usually
negligible—together with the resistance of loading resistors used to adjust the value of C, R ;
to avoid instability in the particular amplifier used in these experiments, it is essential that
R, should not exceed 5 MQ2, and in most experiments its value is about 2 M. The com-
ponents R, C; and the loading condensers and resistors are contained in an earthed screening
box.

R (soMn) Co (01 1F)
||
J:\/VV\/\/L 1
-
:
p— pm—— o= =5 AMPLIFIER
EP | c Cs Ry ”—_)-]
*;%.-

Ficure 4. The condenser feed-unit circuit.

The action of the circuit is as follows. Before the pressure to be measured acts on the
pressure bar, the condensers C and C, are charged by the battery E, through the high
resistance R; the condenser C, isolates the amplifier from the high-tension battery, and the
charge on C;iszero at this stage, because it is short-circuited by the resistance R,. The effective
time constant, as far as the charging of the condensers C, Cy and C, through R is concerned,
is the product of R into the resultant capacity of C in parallel with C, and C, in series; since
C is much less than C;, and C, is much greater than C,, this resultant capacity is practically
equal to C; and the time constant is thus RC,. C is usually greater than 1000 yxF, and hence
the time constant is normally greater than 0-05 sec.

When the measuring end of the pressure bar begins to move forward, at time ¢ = 0 say,
the value of € changes, the change being completed at a time ¢ = 77, say, which is usually
less than 100 gsec. Since RC; is of order 50,000 usec., the charge which flows from the battery
to the condensers C, C; and C; in time 100 gsec. is negligibly small, and the charge on the
system C, C, and C; may therefore be considered to be constant.

The change in the capacity of C gives rise to a p.d. across C; which is transmitted through
the amplifier to the c.r.o. By making the time constant R, C; sufficiently large in comparison
with the time 77, the effect of the current through R, during the time 7" on the charge and
on the p.d. of C; can be made so small as to be negligible in comparison with other errors in
the experiment. For example, if 7" = 10"*sec. and R C, = 10~%sec. (e.g. R, = 2M®,
C; = 5000 4uF), then the decrease, due to the presence of R, in the charge or the p.d. of C
in time 7" will not exceed 1 %,. To derive the theory of the method it will be assumed that
the effect of the current through R;is negligible, so that R will be considered to be infinite.
(A more exact theory of the circuit, taking the leakage through R, into account, is given in
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appendix 2.) At the same time it will be assumed that RC;> T", so that the system can be
regarded as being charged by the battery to a potential E, at time ¢ = 0, and isolated from
it during the period 0 <#/< 7”. With these assumptions, the circuit of figure 4 can be replaced
by that shown in figure 5. Considering the latter, at time ¢ (0<¢<< 7"), let v = p.d. across C;,
q = charge on the plates of C, ¢ = charge on the plates of C; and C,. Let the values of C, v,
g, ¢’ be respectively C), v;, ¢, ¢7 at time ¢ = 0, and C,, v,, ¢,, g5 at time ¢ = T".

l+4/ 7
C, —,
_—E..'? Er E art=0
¢ . R 'T ?
i

I

Frcure 5. Equivalent circuit of condenser system.

At time £ — 0, E, = ¢,/C, = 6i(1/Cy+1/C,) = gi/C., (51)

where C, = C,C,/(C,+ C,) = the capacity of C; and C; in series.
Since it is assumed that R, of figure 4 is infinite, the p.d. across C; at time ¢ = 0 will not be

zero now, but will be given by the equation
v = qi/C; = CE,/C,. (5:2)

Since the system is electrically isolated, the total charge is the same for all values of ¢
between the limits 0 and 7”. Hence

¢+9 =qa+ta=g+g (5:3)
Now ¢+q = ¢(1+C,/C) from equation (5-1)
= C,v,(1+C,/C,) from equation (5-2).
Similarly g+q = Cv(14CIC,), qy+q5= C,v,(1+Cy/C,).
Hence 0,(C,+C,) =v(C+C,) = vy(C,+C,). (5-4)

IfC = C,+7v,v=v,+V, so that y is the change in the capacity of the bar condenser and V'is
the change in the p.d. across Cj, i.e. the p.d. applied to the input terminals of the amplifier,
then from equations (5-2) and (5-4)

Ve, y .
(15,6 (+gTe) =
. . vE,C,
which gives V= ——Cs(cfm . (5+5)

In many cases, Cis sufficiently small in comparison with C, to allow (C,+ C) to be replaced

by C,; in these circumstances,
V=—yE,C. (5-54)



STUDY OF THE HOPKINSON PRESSURE BAR - 389

Equations (5-5) and (5-5a) give the relation between the p.d. V applied to the input
terminals of the amplifier, the change in capacity y of the bar condenser and the electrical
constants of the circuit. It is now necessary to find the relationship between y and the dis-
placement £ of the measuring end of the bar, and finally the equation connecting § with V'
and the circuit constants.

(a) The parallel-plate condenser unit

Let D be the initial separation of the earthed and insulated plates of the bar condenser.
Then the initial capacity C; of the bar condenser is

C, = A(1+¢)/4nD, (5-6)

where A = cross-sectional area of the gap, and ¢ = correction term for the non-uniform
distribution of the field between the plates due to the fact that the plates are not infinitely
close together.

At time ¢, the separation of the plates is (D —§), and the capacity C is therefore

¢ = A+9) (57)

~an(D—-§)’
assuming that the displacement ¢ is sufficiently small in comparison with D to leave the
correction term ¢ unchanged. '
From equations (5-6) and (5-7),
7= ECID = EC, /(D —E), (5-8)
and substituting in equation (5-5), after some reduction, it is found that

VDC,(C,+C,)

§="C(CE,—C V) (5:9)
or, if f = C/C, E), £= A VDF_;?;I/ Ce>, (5-10)

which gives £ expressed in terms of 7 and the circuit constants.
If C, < C,, as is often the case, then equation (5-10) becomes

£ = —BVD/(1—pV). (5-10a)

It will be noticed that the sensitivity of this type of unit, i.e. the ratio of V to £, is not con-
stant unless #V is small in comparison with unity; this is often the case in practice, e.g. if
C,/C, = 100, E, = 600V, V = 0-03 V, then AV = 0-005.

(b) The cylindrical condenser unit

It will be assumed that the insulated cylinder of the condenser unit is adjusted initially
so as to ensure that there is no change in the end-effect during the displacement of the end
of the bar; this condition will be amply fulfilled if the measuring end of the bar projects into
the insulated cylinder to a distance which is five to ten times the difference in radius between
the bar and the cylinder. Under these conditions, the increase in the capacity of the bar
condenser will be proportional to the displacement §, so that if £ is the capacity per unit
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length of the condenser, its capacity C at time ¢ will be (C, +4£), where, as before, C is the

initial capacity of the condenser. From equation (5-5) it follows that

VC,(C,+C)
&= hE,C.1 VO (5:11)

E, is never less than 100V, whilst V never exceeds about 0-07 V, and C, and C; are nearly
equal; VC; can therefore be neglected in comparison with £,C,, and equation (5-11) then

becomes
Ve, C,
£=— Ek(”‘c) (5110)

If C, < C,, this equation becomes £ =—VC[E,k. (5-115)

(¢) Calibration of the condenser units

From equations (5-10) and (5-11) it is theoretically possible to deduce the displacement §
at time ¢ from the p.d. V across the input terminals of the amplifier, the charging voltage E,,
and the dimensions of the condensers. In practice, difficulties arise in the case of the parallel-
plate unit, where it is necessary to set the insulated disk accurately parallel to the end-surface
of the bar so that the distance D between the surfaces, which is of order 0-021in., is known;
it is also necessary that the centre of the insulated disk should lie on the axis of the bar pro-
duced. In addition, the correction factor (1+¢) of equation (5-6), representing the edge-
effect, complicates matters. For these reasons it was decided, in the case of the parallel-plate
units, to determine the value of D for each unit, with its gauge ring, by finding the p.d.
corresponding to a measurable displacement of the measuring end of the bar. Such a dis-
placement can be produced by an impulse of short duration acting at the pressure end of
the bar, e.g. by the impact of a lead bullet or a steel ball at this end, whilst the total dis-
placement of the measuring end of the bar can be deduced from the momentum com-
municated to the bar by the impulse.

Let p be the pressure in the stress pulse produced in the bar by the impact, ¢ the velocity
of the measuring end of the bar at any instant, and £ the total displacement of this end due

to the impact. Then . '
£~ [ea,
where the integral is taken over the duration of the pulse. From equation (1- 2), & = 2p/pcy,
and therefore, whatever be the form of the pulse,
Z A pdt 5:12a
L (512a)

If the duration of the impact is less than the time taken by the stress pulse to traverse the
bar twice, and if 4 is the area of cross-section of the bar, then

Afp dt = momentum acquired by the bar = MU,

where M is the mass of the bar, and U its initial velocity after impact. Thus

£ = 2MU]pc, A. C (5120)
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U is measured by suspending the bar as a ballistic pendulum and determining the ballistic
throw, X,, say. If 7} is the period of the bar as a ballistic pendulum, then

U= 2nX,/T,, (513)

if, as in these experiments, the damping of the vibrations of the pendulum is negligible and
if X, is small in comparison with the length of the pendulum.

£ can thus be determined from measurements of X s 1y M, A, p and ¢,.

If Vis the p.d. across the input of the amplifier due to the displacement £ of the measuring

end of the bar, we have next to express D in terms of é, 17, E,, etc. Let

a=pBV|D = C,V|(C,D) E,. (5-14)
Neglecting the sign of the p.d. v, equation (5-10) then becomes

£ =aD?(14C,/C,)/(1—aD), (515)
which reduces to a(1+C,JC,) D*+afD—E = 0.

The solution of this equation, which is physically significant, is

D:mg_cl./@;{/[1+%(1+q/ce)]_1}. | (5-16)

From this equation the value of D can be found, since £ can be measured as described
above, C, and C; measured with a capacity bridge and the terms (1+C,/C,), which do not
differ much from unity, can be evaluated by calculating the initial capacity C| of the bar
condenser from the simple formula for the capacity of a parallel-plate condenser, the
distance D being found as accurately as possible by means of feeler gauges and slip
gauges of known thicknesses. It remains to determine the parameter a of equation (5-14).
C;, E, and V are measurable, the latter from the oscillograph record as described later in
this report; the remaining quantity which enters into «, the product C, D, is calculated from
Kirchhoff’s expression for the capacity C, of a parallel-plate condenser consisting of one
insulated and one earthed circular disk, each of radius a, thickness d, placed parallel to
each other at distance D apart (see, for example, Kohlrausch 1930, p. 658). This expression
can be written in the form

C, = @(1+4)/36D (i), (5:17)

D 16ma d dy d., d :
where ¢=ﬁ:l—l—ln—l—)——k(l+E)ln(l+ﬁ)~1—)lnﬁ} (In =log,). (5-18)
Thus C,D = a*(1+¢)/3-6 (C,in uuF, D in cm.). (517a)

Ifa = 0-5in. = 1-27cm., D = 0-:0162in. = 0-0411 cm. and d = 0-25in. = 0-635 cm., then
$=0-125; if a=0-25in.=0-635cm., D=0-0124in.=0-0316 cm., d=0-125in.=0-317,cm.,
then ¢=0-178;. .

Considering equation (5-17a), the value of a is easily determined to a high degree of
accuracy. ¢ is only a correction term and the value of the factor (1+¢) is insensitive to small
variations in the values of D and d; in fact, when evaluating ¢ from equation (5-18) and C, D
from equation (5-174), it is found that sufficient accuracy for most purposes is obtained if
D is determined approximately by feeler gauges, etc., and if 4 is taken as the thickness of the
insulated plate of the condenser unit.

Vol. 240. A. 49
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In this way all the quantities on the right-hand side of equation (5-16) can be measured

and the value of D calculated from the equation.

This process of calibrating the condenser unit consists essentially in starting with a reason-
ably good approximation to the value of D, and combining it with measurements of £, C,,
c, ¥V and E,, together with the calculation of the value of C; D, to derive a much more

accurate value of D by using equation (5-16).
Itis clear that, if necessary, this new value of D can be used in equation (5-18) to calculate

a more accurate value of ¢, of C; D and therefore of a; using this new value of « in equation
(5-16), we obtain a still more accurate value of D. In practice, this second step is hardly

ever necessary.
The accurate value of D, in conjunction with the value of C| D, is then used in subsequent

experiments to determine the values of £, corresponding to the measured values of V, C, C;

and E, using equations (5-10) or (5-10a).
To illustrate the procedure, the following are results obtained with a bar 1in. diameter,

2ft. 2in. long:
Mass of bar = M = 2790g.; area of cross-section = 4 = 5-06sq.cm.; p = 7-85g./c.c.;
o = 5°23 x 105cm./sec.; pc, = 4:10 X 106 g./sq.cm.sec. From equation (5:124),

§=2MU|pcyAd = 2-69 x 107* U cm.

Length of wires used to suspend bar as a ballistic pendulum = 15in. = 38 cm. approxi-
mately; period = 7, = 1-16sec. From equation (5-13),

U=2nX,|T, = 541, X,cm./sec.

Hence £ =269 x 107U = 1-45, X 103X, cm.

By measurement with feeler gauges, etc., the value of D was found to be approximately

0-02in. = 508 X 1072cm.; d =0-251in. = 0-635cm.; a = 0-5in. = 1-27 cm.
From equation (5-18) itis found that
¢ = 11-64D/ma = 0-148.

Hence C,D = a*(1+¢)/3:6 = 0-514 uuF cm.; C, = 1310 uuF.

Therefore, from equation (5-14),

} « = C,V/C, DE, = 13107/0-514E, — 255 x 10V/E, ;
C,D = 0514 uFcm.; D =508x10"2cm.;

thus C,=10-14F; C,=1310uF; C,= 100,000 uuF;
hence C,= CyC[(Cy+C,) = 1294 yuF and C,/C, = 10-1/1294 = 0-007,.

Hence, from equation (5-16),
£ {J( 4 1-008E,
-l )
2-016 2-55 x 103VE

Do J(r-ooorss Z2)—1). (5160)
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The results of the experiments and the calculations are summarized in table 5-1, and
from this it will be seen that the average value of D = 5-42 X 1072 cm.

TABLE 5°1
projectile used X, £ 7V E, D
for the impulse (cm.) (10-3 cm..) (volts) (volts) (10-2 cm.)
1-25 in. steel ball 1-56, 2-28 0-0525 193 5-60
1-62 235, 0-0549 193 5:56
1 in. steel ball 0-88; 1-29 0-0536 352 5-69
1-14 1-66 0-0524 242 5-36
1-10 1-60 0-0632 305 5-39
0-75 in. steel ball 0-38; 0-56, 0-0591 719 5-11
0-46, 0-68, 0-0645 719 5-39
lead bullet (700 ft./sec.) 2-68 3-90 0-0656 128 5-25

In this set of results, the maximum deviation of D from the mean value is about 5 % ; in
spite of the differences in the impulses, together with the sevenfold variation in £, and the
fivefold variation in E,, there does not appear to be any systematic error in the results. The
average value of D is thus probably accurate to within 2 or 3 %,.

It will be noticed that this value of D differs by about 6 9%, from the value previously
measured approximately with slip gauges and assumed for the calculation of ¢ and «.
The effect of this discrepancy on the value of C| D and « is, however, small, and calculation
shows that when D = 542 x1072¢m. = 21-5/1000in., ¢ = 11-56D/ma = 0-147. With this
new value of ¢, C; D = 0-513;, which differs from the previous value by one in a thousand;
the effect of this difference on the values of D deduced from the observations is negligible.

To derive the relationship connecting § with the values of V obtained in subsequent
experiments in which this bar with its condenser unit and gauge ring are used, the values
just derived for D and C, D are substituted in equation (5-10). In this equation

f = C,JC\E, = C,D|C\D.E, = 3-6C,D[a*(1+¢) E,. (5:100)
Here B = 542 x1072C,/0-513, E, = 0-1054C,/E,
and BD = 0105, x 5-42 X 1072C,/E, = 0-00572C,/E,.

From equation (5-10), neglecting the negative sign,

- AVD(1+C,/C,) _ 0-00577C, V/E,
14V 1—0-105,C, V/E,
If C, is the same as before, namely, 1310 uuF, this equation becomes
_ T-56V/E, .
g'"1-—138V/E1,' (5-165)

It is worth noticing that when other quantities are constant, £ is proportional to fD
(equation (5-10)), and g is proportional to D (equation (5-105)); under these conditions,
£ is therefore proportional to D?, and fractional error, ¢ say, in the determination of D leads
to a fractional error of 2¢ in the values of § calculated from this value of D.

Turning now to the case of the ¢ylindrical condenser units, calibration experiments on the
lines just described for the parallel-plate condenser units are unnecessary, since equations

49-2
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(6:11a) and (5-11b) show that £ is derivable from the measurable quantities V, E,, C;, Cy,
C, and £. C; occurs only in the factor (1+C,/C,), which is normally so near to unity that C;
needs only to be known with moderate accuracy. The value of £ (in yuF/cm.) is given by

the expression
0-2416

= logdJa (log = log,y), (519)
where a is the radius of the bar and &’ the internal radius of the insulated cylinder.
Thus £ can be accurately determined from measurements of ¢ and @’ if the condenser
unit is constructed and adjusted so that the axes of the insulated cylinder and the bar are
coincident. By careful construction and manipulation in a lathe, it is possible to adjust the
condenser unit so as to make the axis of the brass sleeve G of figure 3 coincide with the axis
of the insulated cylinder 4. When, however, the unit is slipped on the pressure bar, the
clearance between G and the bar will result in the axis of the insulated cylinder being dis-
placed slightly relative to the axis of the bar, although they will still remain parallel. This
will alter the value of £ from that given by equation (5-19) by an amount which can be
estimated from the known expression for the capacity of cylinders whose axes are parallel
but not coincident. Ifd is the distance between the axes of the two cylinders of radii a and
a', and if d and (@' —a) are small, then it can be shown from the formulae given, for example,
by Russell (1914, p. 167), that the capacity per unit length, £,, when the cylinders are

eccentric is given by
k :k/A/[l_LJNk[1+1—L:I (5.20)
¢ (@' —a)?]™ 2(a"—a)?l’

If 24’ = 1in., 2a = 1in. and d = 0-004in., which corresponds to an extremely slack
fit of the sleeve on the bar, d/(a’—a) = 0-128, and £, = 1-008k; normally 4 will be about
0-002in., which gives k£, = 1-002k. The effect of the eccentricity of the cylinders can therefore
be neglected in most cases, and k£ determined from accurate measurements of 2 and a’.

6. THE CATHODE-RAY OSCILLOGRAPH

The transient p.d., V, developed across C; and R, of figure 4, after amplification, is applied
between earth and one of the Y-plates of the c.r.o., so as to give a vertical deflexion to one
of the beams of the tube. The short duration of V' makes it essential to obtain the maximum
possible writing speed on the photographic plate used for recording. The writing speed is
determined by three factors: (1) the type of cathode-ray tube; (2) the camera lens, and
(8) the photographic plate.

(1) For high-speed recording, it is desirable to use a high-vacuum tube in which the beam
is focused by an electron lens system; by running the tube at a high anode voltage and tem-
porarily intensifying the spot during its motion, a high writing speed on the oscillograph
screen is readily obtained. In these experiments, a Cossor indirectly heated electrostatic
high-vacuum tube, type 3259 J (double beam) has been used; this tube is fitted in the Cossor
Oscillograph Tube Unit, Model 3402, which enables the tube to be run at a maximum
anode voltage of 3000 V. Under these conditions, the writing speed is adequate for the
present experiments; the low sensitivity of the tube, about 0-22mm./V (d.c.) can be offset
by using an amplifier with a sufficiently high gain.
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The diameter of the fluorescent screen of tube type 3259 ] is 9in. = 22 cm.; it is, however,
advisable to avoid using the curved marginal portions of the screen since distortion would
be introduced, and in the present experiments only the central flat region of the screen,
measuring about 10 by 5 cm., has been used.

(2) The camera must be fitted with a high-quality lens of large aperture. In these experi-
ments, the camera lens is a Kodak Ektar lens, f/2 aperture and 4-5 cm. focal length, mounted
in a Compur shutter.

The distance from the lens to the photographic plate in the camera is such that the size
of the image is about one-third of the size of the object; the intensity of the image formed by
a lens is inversely proportional to the square of {1+ (length of image)/(length of object)},
other quantities remaining constant, and the reduction of one-third in size gives an image of
reasonable size without excessive loss in intensity.

(3) The J type screen used in the cathode-ray tube gives a light blue fluorescent spot
with an afterglow which persists only for a time of the order of a microsecond. With this
type of screen, Ilford ‘Selochrome’, ‘Zenith’ and ‘Golden Iso-Zenith’ plates have been
found to give very satisfactory records, particularly when developed in a high-contrast
developer. With records of low intensity, it is advisable to increase contrast still further by
developing at a temperature of 70 to 75° I; this results in a plate in which the background
is fogged compared with one developed at the normal temperature of 65° F, but the increase
in contrast gives greater accuracy when the plates are measured with a travelling microscope.

7. THE AMPLIFIER

The voltage V developed at time / across the shunt condenser and resistance, C; and R,
of figure 4, due to the displacement § of the measuring end of the pressure bar, requires
amplification before it can be used to deflect the beam of the c.r.o. In most experiments,
according to equation (5-5a), the factors which determine the maximum value ¥ of the
p.d. Vare (1) the polarizing voltage, E,; (2) the shunt capacity, C;; (3) the maximum change
in capacity, J, corresponding to the total displacement £ of the measuring end of the pressure
bar.

By suitably designing the condenser unit and choosing the values of E, and Ci, it is
possible to arrange that the value of Vis about 0-04 to 0-09 V (d.c.), and to ensure at the same
time that the value of R in conjunction with the chosen value of C, is sufficient to make the
value of the time constant R C, large enough to make the correction for leakage through R,
negligible. In most cases, a photographic plate on which the maximum vertical deflexion,
b‘ due to V is about 3 or 4 mm. will give reasonably accurate values of £ when measured
carefully with a good travelling microscope. A deflexion of 3 mm. on the photographic plate
corresponds to about 9mm. on the oscillograph screen, and since the sensitivity of the
oscillograph tube is about 0-22mm./V (d.c.) it follows that the p.d. required to produce the
desired deflexion of 9mm. is 9/0-22 = 41 V. Taking 0-07V as the average value of the
maximum input voltage, V, the gain of the amplifier must be about 41/0-07 = 585.

The amplifier must also fulfil three further conditions:

(1) The relation between the deflexion d finally recorded on the photographic plate and
the input voltage V must be linear up to a value of, say, 0-07V (d.c.).
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(2) Since the displacements £ which have to be measured often change suddenly in times
of order 5 usec., the amplifier must faithfully amplify transient p.d.’s which vary similarly
with time; it is also desirable that the amplifier should be capable of amplifying without
distortion transient voltages which last for times of order 5msec. Broadly speaking, this
implies that the high-frequency response of the amplifier should be very good and its low-
frequency response moderately good.

(3) Since the gain of an amplifier varies somewhat during the course of a series of experi-
ments, it is necessary to arrange means whereby the amplifier can be calibrated frequently.
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Fioure 6. Circuit diagram of the amplifier. Thick lines denote earthed screens. S, single-pole,
double-throw switch; J, jacks (closed circuit type); F, fuse. V;, Mazda S.P.41; V,, Mazda S.P.42.
Cyy, 0:00054F; C), 0-05uF (mica); Cy, 200uF (electrolytic); Cs, 2uF; Cy, 0-01uF; Cy, 0-1uF. R,
5MQ; R, 1002; Ry, 30002; Ry, 20,00002; R,, 0-25 MQ2; Ry, 5402; Ry, 10082; R,, 27,0002; Ry, 4400.02;
R,, 33002; Ry, 29,0002; R, 50002; R, 0-1MQ; Ry, 11,000Q; R, 25002; R, 3400L.
L, 24pH; L, 25pH. H.T.310V; L'T.4V.

The circuit diagram of the amplifier used in this work is shown in figure 6. It has two
stages in order to give sufficient gain, and the coupling circuits are designed so that the
distortion of the signals is negligibly small. The output p.d. is proportional to the input p.d.
when the latter does not exceed 0-095V (d.c.); the deflexion on the photographic plate
corresponding to this value of input p.d. is about 4 mm.

When C, in figure 6 is 0-01 4F, the (gain, frequency) curve of the amplifier is linear from
800 to 10%cyc./sec., the gain in this region being 550; the gain drops to half this value at
8 x 10° and 80 cyc./sec. at the upper and lower ends. When C, in figure 6 is 0-1 £F, the gain
at the lower end drops to half value at 8 cyc./sec., whilst the high-frequency portion of the
curve remains unchanged.

In order to calibrate the amplifier, a signal of sine-wave form is fed from an oscillator into
the input circuit containing the potentiometer R,, the switch § being in position 1. The
resistance R, serves to maintain a reasonably high load across the oscillator, thus avoiding
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distortion of the wave form, whatever be the position of the variable contact on R,. The p.d.
across R, and R,, which can be varied by means of R,, is measured by a valve voltmeter,
and the voltage across R, is applied between the grid of the first valve and earth; thus the
fraction R;/(R,+R,) of the voltage, ¥, V (r.m.s.) say, indicated by the valve voltmeter is
applied to the input terminals of the amplifier.

This signal, when amplified, gives a vertical line on the c.r.o. screen, and if the line is
photographed an overall calibration of the amplifier and the camera will be obtained.
Actually, if the length of this vertical line is measured, the measurement will be in error
because of the unknown but finite size of the oscillograph spot, and in order to avoid this,
the trace is photographed when it is swept across the screen by the sweep unit. If §, is the
vertical distance from the centre of a crest to the centre of a trough of the sine-wave trace
obtained in this way, then J, corresponds to a p.d. R,V/(R,+R,)V (rms.), ie. to
2 /2R, VJ(R,+R,) V (d.c.). In order to avoid errors due to stray capacities associated with
the R, R, circuit, and the decrease of the gain of the amplifier at high and low frequencies,
the frequency of the signal used for calibration is about 2000 cyc./sec.

When a transient voltage pulse from the bar condenser is to be recorded, the switch S is
placed in position 2. If § is the vertical deflexion on the photographic plate at any instant,
then the corresponding p.d., V, across the input terminals of the amplifier, i.e. across C;
and R, in figure 4, is 2 2R,V 8

V= R +R, 9,

(V(d.c.)), (7-1)
provided that the camera setting and the gain of the amplifier have not changed between
the bar experiment and the calibration experiment. When the deflexions ¢ and J, are ex-
pressed in mm. on the photographic plate, the value of the factor 2,/2R,V,/(R,+R,) J, in
this apparatus is about 0-025 V(d.c.)/mm.

8. THE SWEEP CIRCUIT

Consider the circuit shown in figure 7, in which a battery of e.m.f. £, is shown connected
in series with a key K, which is initially open, and the primary coil of an iron-cored trans-
former. The total inductance of the primary circuit is denoted by L, and its resistance by R,
the inductance of the secondary circuit by L,, its resistance by R,, and the mutual inductance
between the primary and secondary coils by M.

" P—

" T
E, é R, L, M RZ’H% E,
T 1

K

Ficure 7. Transformer circuit.

Let the key K be closed at time ¢ = 0. At time £, let ¢, be the current in the primary circuit,
i, the current in the secondary circuit, and E, the p.d. across R,.

Let 7, = L,/R, be the time constant of the primary circuit, 7, = L,/R, the time constant
of the secondary circuit and ¢ = 1— (M?/L,L,) the magnetic leakage factor of the trans-
former.
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The equations of the circuit are

di di . di di . .
Llj;%—M?;—l—Rlzl = E,, Lzz,;z+M7;+R212:O, E, = R,1,. (8-1)
The solution for E,, subject to the initial conditions ¢; =i, = 0 at £ = 0 is
E,= -E11R2§1 '2—0)4 fet—g=at) (8-2)
Ty
Ty To)  TiTy
—A) 1 (11 1,1\ 40
where B e A N (e e (8:8)

From equation (8-2) it follows that £, is zero at = 0 and ¢ = 00, and that it reaches a

maximum value £,,, at { = ¢,, where
‘= %2% (8-4)

The exact shape of the (£, ¢) curve depends on the values of 7, 7, and ¢; with the values
which these parameters usually assume with a step-up transformer, it is found that, as shown
in figure 8, F, initially increases very rapidly as time increases; £, then attains its maximum
value F,, and finally decreases slowly as time increases.

Suppose that the terminals of R, in figure 7 are connected to the X-plates of the cathode-
ray tube, giving a horizontal deflexion of the spots. When K is open, the spots are at rest;
when K is closed, the spots will be swept to one side of the initial position (the forward stroke).
They will momentarily come to rest when F, is a maximum, and finally they will return to
their initial position (the return stroke). From figure 8 it is clear that the forward stroke is

more rapid than the return stroke.

Ficure 8. (E,, ¢) curve for transformer circuit.

This is the principle of the sweep unit used in these experiments. The complete circuit
diagram is shown in figure 9, in which 7 represents the iron-core transformer and L,, L,
the windings corresponding to the primary and secondary coils of figure 7; the components
of the circuit, together with the various leads, are screened. It will be seen that the key K
of figure 7 is replaced by the circuit containing the gas-filled relay valve V with its associated
resistances and batteries, etc.

The grid circuit of this valve can be closed by means of the switch S, and the ring switch
on the bar (see figure 1), connected in series with each other and with the grid battery B,
across the resistance R;; the function of R, is to earth the grid of V' when §, or the ring switch
are open, whilst R, prevents excessive grid current when V is in the conducting state. The
anode circuit of the valve can be opened or closed by means of the switch \$,.
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The e.m.f.’s of the anode battery B, and the grid battery B, are adjusted so that (1) the
valve is non-conducting when the grid circuit is closed before the anode circuit, and (2) with
S, closed, the valve becomes conducting when the bias on the grid is removed by breaking
the grid circuit either by opening S, or the ring switch. Thus, after the valve has been ‘set’
by closing the grid circuit before the anode circuit, the current in the anode circuit of the
valve and in the winding L, of the transformer begins to flow almost immediately, when the
ring switch or S, is broken. Once the anode current is started, the grid loses control and the
sweep will therefore be completed irrespective of what happens in the grid circuit; this
feature is very useful because it makes the sweep independent of events such as ‘ chattering’,
which may occur at the ring switch after the initial break. The circuit must be reset each
time the valve has become conducting.
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Ficure 9. Circuit of sweep unit. V, Cossor G.D.T. 4B gas-filled relay valve. 7, Pye mains transformer
for television sets. L;, 375-0-375V secondary winding; inductance = 100H; resistance= 2002.
L,, 5000 V secondary winding; inductance = 500H; resistance = 15,00002. Lj, 200 V primary
winding; inductance = 17H; resistance = 122. E.m.f. of B, = 150-250 V; em.f. of B, = 12V,

(I) For rapid sweep (working on forward stroke): R; = 20,000Q; R,=1002;.R; = 50002;
R, =2MQ.
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In order to preserve the focus of the spots of the c.r.o. when they traverse the screen, it is
essential that the p.d.’s applied to the two X-plates should be symmetrical with respect to
earth potential. To satisfy this condition the resistance connected across L, consists of two
equal resistances R; joined in series, with their common point earthed.

As stated in §2, the horizontal traverse of the beam is normally timed relative to the
vertical deflexion due to the output from the bar condenser by adjustment of the distance
from the ring switch to the measuring end of the bar. An additional adjustment can be
provided by connecting a condenser across the resistance R; if the values of this condenser
and R;, together with the e.m.f.’s of the batteries B, and B,, are suitably chosen, then any
desired delay can be introduced between the opening of S, or the ring switch and the firing
of the relay valve.

Vol. 240. A. 50
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The third winding, L,, of the transformer 7"is used to apply an impulse to the modulating
grid of the c.r.o0.; this impulse is of the form shown in figure 8, and if its sign is correct it will
intensify the beams during their traverse, thus allowing the intensity of the stationary spots
or lines to be kept low and avoiding the destruction of the oscillograph screen and the fogging
of the photographic plate.

When dealing with transient p.d.’s from the bar condenser which last only for times of
order 20 to 40 usec., the rapid forward stroke is used, and typical values of the resistances,
etc., are given in figure 9. This figure also shows how a resistance-capacity filter, which is
really one element of a high-pass filter, can be connected between L; and the modulating
circuit of the c.r.o. in order to eliminate the major part of the slow return trace to avoid

confusion of the record.

Ficure 10. Oscillogram of a pulse due to the impact of a bullet. Pressure bar: length = 2 ft. 2 in.,
diameter = 1 in. Condenser unit: parallel-plate type. Velocity of bullet = 998 ft./sec. Upper trace:
timing wave of period 40-3, usec. Middle trace: amplified p.d. from condenser unit. Lower trace:

datum line.

When the p.d. from the bar condenser lasts for a time of order 1 to 2 msec., the slow return
stroke is used, and appropriate values of the resistances, etc., are given in figure 9. The
elimination of the forward stroke is not very important in this case, since the writing speed
on the forward stroke is very much greater than on the return stroke and the photographic
intensity is therefore much less; furthermore, the undeflected forward stroke is useful in that
it provides a datum line from which the vertical deflexion of the recording spot can be
measured. If, however, it is necessary to eliminate the forward stroke, a resistance-capacity
filter, which is virtually an element of a low-pass filter, can be inserted between L, and the
modulating terminal of the c.r.o., as shown in figure 9.

In general, the speed of traverse is not constant; this is no disadvantage with a double-
beam tube in which a timing trace is recorded simultaneously with the transient p.d. In
practice the rapid forward stroke and the slow return stroke can be arranged so that they do
not differ greatly from constant-speed strokes except at the ends, and by making a small
correction for the deviation it is easy to find the time corresponding to any given abscissa
on the record. With the values of the resistances, etc., given in figure 9, 1 msec. corresponds
to about 15 cm. on the photographic plate in the case of the rapid sweep, and to about 1-5 cm.
in the case of the slow sweep.
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The photographs of figures 10 and 11 show the types of records obtained when working
on the fast forward stroke and the slow return stroke respectively. In both photographs, the
spots and the lines on the c.r.o. screen are initially at the left of the photographs, and, in fact,
the initial positions of the spot and the line are visible in figure 10. In each case, the forward
stroke is from left to right and the return stroke from right to left.

Frecure 11. Oscillogram showing the discontinuous motion of the measuring end of a bar, caused
by the impact of a steel ball on the pressure end. Pressure bar: length = 3 ft. 9} in., diameter = 1§ in.
Condenser unit: parallel-plate type. Upper trace: amplified p.d. from condenser unit. Lower trace:
timing wave of period 435 usec.

The photograph of figure 10 is an enlargement from a plate obtained in an experiment
which was carried out to test the accuracy of the calibration experiments summarized in
table 5-1 above; the results of this experiment are analyzed in § 9 below. The upper curve in
the photograph is the timing wave whose frequency was 24-8, kcyc./sec. and whose period
was therefore 40-3,usec. The middle curve is due to the amplified transient p.d. from the
bar condenser which was a parallel-plate unit with the distance D equal to 0-054,cm. The
pressure bar was 2ft. 2in. long and 1in. in diameter; the stress pulse was produced by the
normal impact of a 0-22 lead bullet, velocity 998 ft./sec., on the pressure end of the bar. The
circuit shown in figure 9 was used to eliminate the return stroke, and, over the important
part of the record, the forward traces are clear of the return traces.

The lower trace in figure 10 is a datum line from which the vertical deflexions, 8, on the
condenser output trace were measured. This line was photographed separately after the
two upper traces had been obtained. The oscillator setting was left undisturbed, and the
region of the screen on which the timing trace would appear was blacked out; the lower spot
was displaced on the screen by the X-shift control on the c.r.o. unit, so that it would not
confuse the existing record when traversing the screen from its new initial position. The
position of the photographic plate was kept unchanged, and the beams were swept across
the screen by the switch S, of figure 9 when the camera shutter was open. With these adjust-
ments, the path of the lower spot will be parallel to its undeviated path in a pressure measure-
ment, except in so far as its motion is affected by coupling between the two beams of the
oscillograph. The straightness of the lower trace in the photograph shows that the inter-

action between the two beams is negligibly small.
50-2
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The maximum writing speed of the spot on the photographic plate in this record is about
12-5 km./sec. or 7-75 miles/sec.

In figure 11, the trace due to the transient p.d. from the bar condenser is above the timing
trace, which in this instance has a period of 435 usec. The length of the pressure bar used in
this experiment was 3 ft. 9% in. and its diameter was 1}in.; a parallel-plate condenser unit
was used, the distance D being about 1 mm. The impulse on the pressure end of the bar was
produced by the impact of a steel ball, 2in. diameter, suspended in pendulum fashion, and
displaced and released so as to hit the centre of the pressure end of the bar normally. The
forward stroke was not eliminated, and in the period covered by the return stroke the photo-
graph shows the arrival at the measuring end of the first pulse, followed by a large number of
pulses due to repeated reflexions at the pressure end of the bar. The vertical deflexion corre-
sponding to the later pulses is less than that corresponding to the earlier ones on account of
saturation of the amplifier, although this is partly offset by the increase in the sensitivity of
the bar condenser as the distance D decreases when the measuring end jerks forward on the
arrival of each pulse.

The velocity, ¢,, of longitudinal elastic waves in the pressure bar can be estimated from
this photograph; the time corresponding to the horizontal distance between two successive
knees on the condenser record is approximately equal to the period of the timing wave;
¢, is therefore approximately

(2% 3-79)/(4-35 X 107%) = 17,400 ft./sec. = 5-31 x 10% cm./sec.

9. THE CALCULATION OF EXPERIMENTAL RESULTS

The results of the measurement of the plate corresponding to figure 10 and the calculation
of £ (see §§ 5, 7) and ¢ are shown in the curve marked ‘§ (experiment)’ in figure 12, the dots
indicating the values which have been calculated from the readings of the measuring micro-
scope. ¢ is found by differentiating the (&,¢) curve and p determined from equation (1-2)
with pe, = 410 X 108 g./sq.cm.sec.; the relationship between p and ¢ obtained in this way is
shown by the curve marked ‘p (experiment)’ in the figure.

To compare this (p,¢) curve with theory, let { be the length of the pressure bar and 4 its
area of cross-section; if the bullet is assumed to behave as a fluid, then the pressure p at a
point just within the measuring end of the bar at time ¢, reckoned from the instant of arrival
of the stress pulse at the measuring end, is

p=p U414, (9-1)

where p, = the density of the bullet = 11-34g./c.c.; U, = the velocity of the bullet;
A’ = the area of cross-section of the bullet in contact with the pressure end of the bar at time
(t—1]cy).

The duration 7" of the impact of the bullet is

" =1,/U, (9-2)

where /, is the length of the bullet.

The values of p and 7" can thus be calculated from measurements of U,, [, and the radius
of the bullet at different points along its length. In the experiment relating to figure 12,
U, = 998 ft./sec. = 3-04,x 10*cm./sec., {, = 0-87,cm., and therefore 7" = 28-8usec.; the
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relationship between p and ¢, calculated from the size and shape of the bullet, assuming it
to behave as a fluid, is shown in the broken-line curve labelled ‘p (theoretical, fluid theory)’
in figure 12. This curve is subject to large errors in its initial and final portions, i.e. in the
regions corresponding to the nose and the tail of the bullet, because of the difficulty of
accurate measurement of the dimensions of the bullet near the nose, and because of the
presence of a ridge and a concavity near the tail.
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Ficure 12. Analysis of the record shown in figure 10. ¢ = time, reckoned from the instant of arrival
of the pulse at the measuring end of the bar; p = pressure in the bar; £ = displacement of measuring
end of the bar.

Apart from this, the calculated (p,¢) curve is in error because of the finite value of the
yield stress of the material of the bullet; the value of this stress (reckoned as ‘true stress’)
was found by experiment to be 2-1 tons/sq.in.

The effect of finite yield stress on the pressure due to the impact of a bullet has been
considered by Hopkinson (1914), assuming that the stress system in the bullet is one-dimen-
sional; calculations on the lines indicated in this paper show that during the first 10 usec.,
the effect of the finite strength is too small to be shown in figure 12, and that the pressure is
reduced in the later stages, the duration of the impact being increased by about 3 9%,. The
calculated pressure, when allowance has been made for finite strength, is shown in figure 12
by the chain-dotted curve labelled ‘p (theoretical, allowing for the strength of the bullet)’,
extending from ¢ = 11 usec. to ¢ = 29-6 usec.

The diagram shows that the qualitative agreement between the theoretical and experi-
mental (p, ) curves is rather better when the effect of the strength of the bullet is taken into
account. There is still considerable discrepancy in the later stages of the impact, where the
assumption that the stress system in the bullet is one-dimensional undoubtedly breaks down.
This is clearly shown to be the case by examining the residue of the bullets after impact.
In one experiment, with a bullet moving at 741 ft./sec., the weight of the residue was found
to be about one-third of the weight of the bullet, whereas the theory used here shows that
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the ratio should be 0-0014; the diameter of the residue was about 0-375in. compared with
0-22in. for the bullet. These facts indicate that Hopkinson’s theory of the effect of the
strength of a bullet on the force which it exerts needs modification in the light of recent work

on the propagation of plastic waves.
The curves shown in figure 12 satisfy the momentum relationships, since the value

of fpdt taken over the duration of the pulse is 12-0 x 103g./cm.sec. when evaluated

from the experimental (p, f) curve and 11-9 x 10° g./cm.sec. when evaluated from the
theoretical (p, ) curve, after allowance has been made for the finite strength of the bullet.
From equation (5-124), the integral should be equal to 1pc,€ which has here the valuc
12-3 X 10%g./cm.sec.

Further discussion of the agreement between the theoretical and experimental (p,¢?)
curves in figure 12 will be deferred until the more accurate theory of the pressure bar has

been discussed in the next sections.

10. INTRODUCTION TO A MORE ACCURATE THEORY OF THE PRESSURE BAR

In order to discuss the accuracy of the method used in these experiments, it is necessary
to examine in greater detail the propagation of pulses in the cylindrical pressure bar, since
the elementary result that such pulses are propagated without change of form with constant
speed ¢, = ./(E/p) is only a first approximation which cannot be expected to hold when the
variations in pressure occur in times which are of the order of the time taken by a stress wave
to traverse distances equal to the diameter of the bar, i.e. when the wave-lengths of the
vibrations concerned in the propagation of the pulse are comparable with the lateral
dimensions of the bar.

The exact equations of longitudinal vibrations of a circular cylinder, due originally to
Pochhammer (1876) and to Chree (1889), are given by Love (1934, § 201).

These equations are very complex, but it is possible to deduce from them the phase and
group velocities of sinusoidal waves in a bar of finite radius and to calculate the distribution
of the stresses and displacements over the cross-section of the bar. Although it is possible, by
using Kelvin’s method of stationary phase, to obtain information about the periods of the
dominant groups involved in the propagation of an infinitely intense disturbance concen-
trated initially in a very short length of the bar, it is difficult to use the equations to study,
in a general way, the change in form of a pressure pulse as it travels along the bar. The values
of the phase velocities derived from the exact equations can, however, be used in con-
junction with Fourier’s theorem to find the motion at various points in the bar due to any
arbitrary periodic disturbance originating at a given point in the bar. These matters are
discussed in §11.

By using the form of the wave equation (due apparently to Love (1934, §278)), which
includes a term representing the effect of the lateral inertia, or the radial forces acting in the
bar, it becomes possible to calculate the displacement at the measuring end of the bar due
to the action on the pressure end of a force which rises instantaneously from zero to a finite
constant value. The results of calculations based on this equation cannot be regarded as
exact, but since they are more accurate than the simple theory they are useful in indicating
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the order of magnitude, at any rate, of the effects of dispersion on the propagation of a pulse
as distinct from a periodic disturbance. This problem is discussed in § 12, which also includes
a comparison between theory and experiment.

11. THE PROPAGATION OF WAVES IN A BAR OF INFINITE LENGTH ACCORDING
TO THE EXACT EQUATIONS OF PocuHAMMER AND CHREE

Considering a cylindrical bar of radius g, let the axis of the bar be taken as the axis of x
and let 7 denote distances measured at right angles to Ox. Let ¢ be the velocity of propagation
of extensional sinusoidal waves of wave-length 4 and period 7 in the bar.

The main differences between the elementary theory and the exact general theory of
Pochhammer and Chree are as follows: (1) According to the simple theory, the velocity of
a sinusoidal wave is independent of 4 and is equal to ¢, (= \/(E/p)) ; according to the general
theory, ¢ is determined by a, 4, ¢, and ¢, where ¢ is Poisson’s ratio, and, in fact, (¢/c,) is a
function of ¢ and (a/4), which is unity only in the limit when /4 is zero. Dispersion will
therefore occur in the general case, and if an arbitrary disturbance, originating at x = 0,
say, 1s resolved into its Fourier components, the relative phases of these components vary
with the distance from the origin and the disturbance suffers distortion as it travels along the
bar. (2) According to the simple theory, the longitudinal stress and displacement are
uniform over the cross-section of the bar, the radial stress is everywhere zero and the radial
displacement at distance 7 from the axis is gpr/E. In the general case, the longitudinal stress
and displacement vary over the cross-section of the bar, the radial stress is finite and the
radial displacement does not follow the simple linear law.

The discussion which follows deals with the effects of these differences on the response of
the various types of condenser units which can be used with the pressure bar.

The boundary conditions at free ends of a bar cannot be satisfied exactly in the general
case (see Love 1934, §201); to avoid this difficulty and, in addition, complications due to
reflected waves, the length of the bar will be assumed to be infinite.

(a) The phase and group velocities of sinusoidal waves in a bar

The relation between ¢/c,, o and a/4 can be expressed in terms of the roots of an equation
(the frequency equation) involving Bessel functions, which can be derived from equation
(54) on p. 289 of Love’s book. This equation has multiple roots, and solutions were found
for the first three roots differing from zero, assuming ¢ to be 0-29. A year or so after the
completion of these calculations, a paper by Bancroft (1941) appeared on the same subject,
and it is now unnecessary to give the details of the calculation. Bancroft’s calculations refer
to the lowest root of the frequency equation which differs from zero, and they are carried
out for values of ¢ ranging from zero to one-half. The results obtained by interpolation
to 0= 029 between the values given by Bancroft for ¢ =025 and o= 0-30 agree
with the present results, which are summarized in table 11-1 and shown graphically in
figure 13.

The columns and the curves marked (1), (2) and (3) refer respectively to the first, second
and third roots of the frequency equation differing from zero. The results are given in non-
dimensional form, namely, ¢/c, as a function of a/4.
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Since 4 = ¢T, a/A = acT, i.e. a/A is equal to the time taken by an extensional wave to
traverse the radius of the bar divided by the period of the wave. Furthermore, ac/4¢,is equal
to a/Tc,, so that, if the material of the bar is unchanged and its radius is multiplied by a
factor v, say, and the period of the wave is simultaneously multiplied by the same factor,
a/4 and ¢/c, remain unchanged, since (ac/4c¢,) is a function of ¢ and a/4 only.

TABLE 11-1. VELOCITY OF SINUSOIDAL WAVES IN STEEL CGYLINDERS (¢ = 0-29)

ajd

¢fé ) @) (3)
1-536 — 0-232 0-390
1-448 — 0-251 0-425
1-254 — 0-313 0-560
1-200 — 0-342 0-615
1-168 — 0-371 0-675
1-150 — 0-388 0-709
1130 ' — 0-415 0-751
1-116 ' — 0-442 0-796
1-086 — 0-506 0-892
1-023 — 0-605 1-008
1-000 0-000 0-636 —
0-985, 0-1259 — —
0-978 0-1505 — —
0-958 0-1968 0-715 —
0-886 0-2875 0-846 1-345
0-809 0-3625 1-020 1-649
0-724 0-4550 1-395 2-242
0-687 0-5049 1-71 2-81
0-650 0-5868 — —
0-627 — 5-61 9-84
0-600 0-8191 — —
0-590 0-9355 — —
0-580 11794, — —
0-579 1-2239, — —
0-578 1-2815, — —
0-577 1-3549, — —
0-576 1-4575, — —
0-575 1-6188, — —
0-574 20936, — —
0-5764 0 ‘ — —

Figure 13 also shows the values of the ratios ¢, /c,, ¢,/c, and ¢/c,, where ¢, is the velocity of
the wave of dilatation in an infinite medium, ¢, the velocity of the wave of distortion in an
infinite medium and ¢, the velocity of the Rayleigh surface waves in a semi-infinite medium.

In terms of ¢
2 . 2 1
¢ l1—0o s (11-1)

G (1+0)(1—20)" c 2(1+0)
As Bancroft has shown, the velocity corresponding to the first root of the frequency equation
approaches the value ¢, asymptotically as a/4 becomes infinite.
The dotted curve (1a) in figure 13 gives the relationship between ¢/¢c, and a/4 when ¢ is
given by the formula derived from the wave equation used in the next section.
The curves (1), (2) and (3) in the diagram relate to different modes of vibration of the
cylindrical bar. From the expressions given later for the longitudinal displacement at
distance 7 from the axis of the bar, it can be shown that curve (1) (the first mode) corresponds
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to vibration either without a nodal cylinder, or with one nodal cylinder, depending on the
value of a/4; curve (2) (the second mode) corresponds to vibration with one or more nodal
cylinders, and so on. The particular mode of vibration excited in any given instance depends
on the initial conditions. Under the conditions which prevail in these experiments, it is
unlikely that the vibrations of curves (2) and (3) are ever excited,* since they correspond
to waves of extremely short periods and to forces applied over very small portions of the
cross-section of the bar.
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Ficure 13. Phase velocity ¢ of extensional waves of wave-length A
in cylindrical bars of radius a.

The velocities ¢, ¢, ¢;, ¢, and ¢, are phase velocities, i.e. they give the velocity of transmission
of surfaces of constant phase defined by the equation 27 (¥ —ct)/4 = constant. In dispersive
media, the group velocity, i.e. the velocity of propagation of a wave packet consisting of
waves whose wave-lengths do not differ greatly from a certain fixed value, is more important
than the phase velocity, since, for example, the rate of transmission of energy is equal to
the group velocity rather than the phase velocity. If ¢, is the group velocity, then

de ¢, ¢, ad(cle)
Aaa " oo T adaidy

C,=C—

2 (11-2)

* This conclusion is supported by experiment (see the discussion on p. 427 in connexion with figure 23).
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The values of ¢ /c, for branches (1), (1a) and (2) of figure 13 have been calculated by differ-
entiating the appropriate curves and using equation (11-2); the variation of ¢,/c, with a/4
is shown in figure 14. It is worth noticing that although the phase velocity in the second
branch of figure 13 exceeds the velocity ¢, of the fastest possible wave in an infinite medium,
the group velocity never exceeds c,.
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Ficure 14. Group velocity, ¢,, of extensional waves of wave-length A
in cylindrical bars of radius a.

(b) The propagation of a pulse according to the method of stationary phase

Considering a bar of infinite length, let the axis of the bar be taken as the axis of x; let the
bar be stressed initially so that the pressure is zero everywhere except at a certain cross-
section, where it is infinite; take the origin of x at this cross-section. If this distribution of
stressis released at time ¢’ = 0, the stress at time ¢’ at a cross-section of abscissa x can be derived
by Kelvin’s method of stationary phase, if certain conditions are fulfilled.

In this method, the initial distribution of stress is expressed as a Fourier integral, and it
may be regarded as the superposition of the stresses due to an infinite number of trains of
sinusoidal stress waves of equal amplitude, all of which agree in phase at the origin; at every
other point in the bar, the various waves are out of phase, and, in the optical sense, they
‘interfere’ destructively, giving zero stress. At time ¢, the effect at a point abscissa «x is
obtained by summing the effects due to all the waves, supposing that each wave has travelled
the distance ¢#'; in this way, phase differences are introduced between the various waves,
and they interfere, so that the main effect is produced by a small group of waves whose
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phase velocities, periods and wave-lengths are nearly equal, and which are in the same
phase at x at time #'.

Let 7}, be the mean period of the waves which coincide in phase at a point of abscissa x
at the time #'; 7, may be termed the predominant period. The waves which reinforce each
other at x at time ¢ must satisfy the condition that the phase, 2m(x—ct’)/4, is stationary,
and this condition is easily shown to be equivalent to x —¢,# = 0; from this equation and the
curves given in figures 13 and 14, the value of 7, can be calculated. In representing the
relationship between 7, x and ¢’ in non-dimensional form, it is convenient to plot 7,/7;, as
ordinate and ¢'/37T; as abscissa, where 7, = a/c, and }7j = x/c,, representing respectively
the time taken by a stress wave of infinite wave-length to traverse the radius of the bar and
the distance x.

and - =

1
370

Since

QN
S S

t x 1
c

Qﬂ|”¢ﬂ
I

the values of the non-dimensional variables can be found, and the (7,/7, ¢'/3T;) curves
derived from the curves marked (1), (1a) and (2) in figures 13 and 14 are shown in figure 15;
the curves for the various modes are labelled similarly in the three diagrams. Figure 15
also shows the values of a/4 corresponding to various values of 7, /T, for curve (1).
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Ficure 15. The period T, of the dominant group in a bar of length /, radius a, at a point abscissa x,
at time ¢ after the departure of an infinitely thin pulse from the origin. T, = a/cy; 3T, = x/c,.
51-2
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The (7,/1,,t[}T;) curves are useful for describing, in general terms, the motion at a
point abscissa x in the bar when an infinite pressure of infinitely short duration, built up
of stress waves of all possible wave-lengths, is released at the origin at time ¢ = 0. If dis-
persion were absent, all the waves would arrive simultaneously at the point at time ¢’ = 75,
giving an exact reproduction of the original pulse, whilst the (7,/7,,#[}T;) curve would
consist of a vertical straight line of abscissa unity, extending from 7, /T, = 0 to 7,/T, = co.

Considering only the vibrations represented by the first mode, the curve (1) in figure 15
extends from ¢ = 17 to ¢ = 2-64 (47;), showing that a pulse propagated in this mode,
originally of infinitely short duration, is distorted as it passes down the bar into a disturbance
of duration 1-64(37;). Since £7; = x/c,, it is clear that the duration of the disturbance in-
creases progressively with distance from the origin. The finite duration of the disturbance
is clearly due to the fact that the (c,/cy, a/4) curve of figure 14 shows a minimum which
corresponds to a value of ¢,/c, differing from zero.

As regards the sequence of events at a given point in a bar, it follows from curve (1) of
figure 15 that when ¢’ = }7;, the dominant group at the point is composed of very long waves,
all of which have travelled with the same velocity ¢,. As ¢’ increases, the values of 7, and a/4
decrease, showing that the infinitely long waves are followed by shorter waves. We would
therefore expect the (pressure, time) curve at a given point to consist of a pulse which may
be regarded as a highly distorted form of the main pulse, followed by a tail consisting of
oscillations of high frequency; since the waves mainly concerned in the propagation of
sharp discontinuities have short wave-lengths, the infinitely sharp discontinuities present
in the original pulse will be rounded off.

Considering the structure of the tail of the disturbance in greater detail, it will be noticed
that 7}, is a single-valued function of ¢ /$7; when ¢ lies between §7; and 1-735(375); in this
region, there is therefore only one dominant group for a given value of ', and it follows from
the curve that the period of the dominant group decreases progressively as ¢’ increases.
When ¢ exceeds 1:735(37;), there are two possible values of 7}, for each value of 7, i.e. two
dominant groups, differing in period and wave-length, arrive simultaneously at the point
considered. In the limiting case of ¢’ = 1-735(47;), the lower branch of the curve becomes
practically a vertical straight line, implying that, at this instant, al/ the waves with periods
less than about 0-57,, arrive simultaneously at the point considered; these waves, which
include the Rayleigh surface waves, are accompanied by a dominant group of period 3-97.

It follows that the portion of the tail immediately following the deformed main pulse
consists of a sequence of high-frequency oscillations, approximately sinusoidal in form,
whose frequency decreases rapidly at first, and then more slowly. The character of these
oscillations suddenly changes when ¢ is about 1-735(37;) ; from this point on, the oscillations
become more complex in shape, since they are composed of two or more superposed oscilla-
tions, both of which vary in period as ¢ increases. The difference between the periods of
the two constituent oscillations decreases as the end of the disturbance is approached, and
furthermore the variation of these periods with ¢' is much slower; the oscillations should
therefore become more regular towards the end.

So far discussion has centred only on the periods of the dominant groups. Provided that
certain conditions are fulfilled, the Kelvin theory also enables one to estimate the magnitude
of the pressure, and the relevant approximate formulae are given in the texts. In the present
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notation, the condition for the validity of the approximate expressions (Lamb 1924, § 241)
is the smallness of the ratio

{1 a 1 }% dz(cg/co)/(d(cg/co))%
2mx ' |3Ty) d(ajA)?[\d(ajd)] *

Unfortunately, the values of the derivatives in this expression and the values of a/x and
t'[£T, corresponding to the present experiments are such that the value of the ratio is usually
so large that the approximate expressions for the magnitude of the pressure cease to hold.

It should be emphasized that the discussion given above refers to a disturbance which is
initially of infinitely short duration. This case obviously cannot be realized in practice, but,
by superposing the results of a number of disturbances of this simple type, it is possible to
proceed to the case of a disturbance of finite initial duration.

(¢) The distortion of a periodic disturbance due to dispersion

If a periodic disturbance of arbitrary form is supposed to act at the origin of x, it is possible
from the curves of figure 13 to determine the distortion of this disturbance when it has
travelled a distance x along the bar. For this purpose, the initial disturbance is decomposed
into its Fourier components of frequencies w,/27 ... nw,/2m, where 7 is an integer and w,/2m
is the frequency of the component of lowest frequency in the disturbance. The nth component

sin
cos
the time reckoned from an instant at which the magnitude of the component at x = 0 is
sin

ARRICTA)

If ¢, is the phase velocity of the nth component, and if damping is absent, the contribution
of the nth component to the disturbance at distance x from the origin is

Buloonl [0~ ), (113

since ¥/c, is the time taken by this component to travel the distance x.
In order to evaluate the terms (11-3), it becomes necessary to determine the values of ¢,
corresponding to the values of nw,; now

will be of the form ﬂn{ } (nwyt' —¢,), where g, is the amplitude, ¢, the phase angle, and #

a _ anw,
A 2me,’
and therefore W _ gpnl (11-4)
Co cod

The quantities on the right of this equation can be evaluated from figure 13, and the curve
showing the relationship between ¢,/c, and anwy/c, can therefore be plotted ; from this curve
the value of ¢, corresponding to a given value of # can be determined when @ and ¢, are given.

For a given value of #, the resultant displacement at the point abscissa x can now be found
by evaluating and summing terms of type (11-3); from the nature of the case this sum must
be found numerically, a sufficient number of terms being taken to ensure that no appreciable
error is caused by the omission of the remaining terms of the infinite series.
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For comparison with the type of pressure pulse which is transmitted along the bar in a
pressure measurement, it will be assumed that the relation between [u,],, the displacement
at x = 0 parallel to Ox (i.e. the longitudinal displacement) on the axis of the bar, and time
t" is of the form shown in figure 16. The ([u,]y, ¢') curve is trapezium-shaped; its amplitude
is [d,]0, its period, represented by OFE, is 2m/w,, and the duration of the inclined portions,
AB and CD, is 27s/w,. Figure 16 shows the (pressure, time) curve corresponding to figure 164,
assuming the relation p = pc,v of the simple theory.
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Ficure 16. (a) Trapezium-shaped (displacement, time) curve.
[4], = displacement parallel to Ox on the axis of the bar at x = 0 at time ¢
[d,], = maximum value of [u,]y; OF = 27/w, = period; 2ms/w, = duration of rising and falling

portions of the curve.
b ressure, time) curve corresponding to (a); points 4’, B’, ... correspond to 4, B, ... in (a).
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The Fourier expansion of the curve of figure 164 is

(—1)ke=D

2 [de] 0 Z 5
n

[#0]o = $diolo— —% sin 7ns cos nwyt’, (11-5)
mes n=1,3,5, ...

so that the phase angles ¢, in expression (11-3) are zero, whilst the amplitudes are given by

the equation

2[d,olo (—1)HD .

b= [ﬂ;‘;’ 0 72)2 sinmns  (n=1,3,5,...). (11-6)

It follows from equations (11-3), (11-5) and (11-6) that the displacement [u,], parallel
to Ox on the axis of the bar at a distance x from the origin is given by

o 2[dy] (—1)ieD ,

[4,], = %[uxo]o——%%)n:h% o sin 775 COS 1w, (t — E;) . (11-7)

The value of [u,], will clearly depend on the values of [#,],, $, ©y, %, 4, ¢’ and the elastic

constants of the bar. Remembering that a/4 and ¢/c, remain unchanged if the material of

the bar remains the same and if the radius and the period of the wave are multiplied by the

same factor v, it follows from equation (11-7) that for a bar of given material, if all linear

dimensions and all times are multiplied by the same factor v, [u,],/[4,], Will remain
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unchanged. Thus, for example, [u,]./[#,0], will be the same for two bars 4 and B if the radius
of 4 is double the radius of B and if the distance x for bar 4 is double that for bar B, provided
that the period of the displacement [«,], and the value of s for bar 4 is double that for bar B.

Assuming ¢ = 0-29 and ¢, = 5 x 10°cm./sec., calculations have been carried out for
§ = 35, 75 and 1 when

x = 200cm. = 6-56ft., a=0-5in. = 1-27cm., 27/w, = 100 usec.
and for s = 4% when
¥ =600cm. = 19-7ft.,, a=127cm., 2u/w, = 100 usec.

When 27/w, = 100 usec. and s = 5%, {5, %, the duration of the inclined portions AB, CD of
figure 154 1s 5, 10 and 334 usec. respectively; when x = 200 and 600 cm., the times taken by
waves propagated with velocity ¢, to travel the distance x are 400 and 1200 usec. respectively.
In each calculation, the summation in equation (11-7) was taken up to n = 29, and table 11-2,
giving the values of [u,],/[ %], calculated with this limit from equation (11-5) for the points
O and 4 in figure 164, shows that the error due to the omission of the higher terms is not
excessive even at the point 4 for s = 55, where, as one would expect, the error is greatest.

TABLE 11-2. VALUES OF [u,]o/[%.0]0

s =35 = s=1
point O 0-0007 0-0011 . 0-0005
point 4 0-0343 0-017 0-0047

The results of the calculations are shown in figures 17 and 18 in which ¢ is plotted as
abscissa and £'[u,],/[%,0]0, where £’ is a constant, as ordinate; each diagram covers a com-
plete period and the points actually calculated are marked in the diagrams. The diagrams
also show the (displacement, time) curve for a distortionless bar, i.e. one in which dispersion
is absent.

Figure 17 shows how the (displacement, time) curve at a given distance from the origin
changes when the period is kept constant and the parameter s is varied; in this diagram,
the values of £" have been chosen so that the slope of the (displacement, time) curve for a
distortionless bar is the same for the three values of s.

Figure 18 shows how the (displacement, time) curve changes when the distance from the
origin is varied, the period and s being kept constant; the value of £’ in this diagram is unity.
The crosses surrounded by circles in figure 18 show the values of [u,]./[4,0], calculated
from equation (11:7), using terms up to n = 29 and assuming the absence of dispersion.
The small deviation of these points from the curve for a distortionless bar shows that the
large oscillations in the curves of figures 17 and 18 are really due to dispersion and not to
errors of computation caused by the neglect of terms beyond 7z = 29 in the infinite series.

The chief features of the distortion shown by the curves in figures 17 and 18 are as follows:

(a) The sharp corners at 4, B, C and D in figure 16 are rounded off.

(b) The straight portions 04, AB, BC, CD and DE of figure 16 become oscillatory curves.

(¢) Corresponding to the inclined portions AB, CD of figure 16, the distorted curves show
regions in which the relation between displacement and time is approximately linear. As
the curve s = 1 in figure 17 shows very clearly, in these regions the distorted curve oscillates
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Ficure 17. The longitudinal displacement [u,], on axis of bar, at a distance x = 200 cm. from the
origin, due to the trapezium-shaped wave of figure 16 acting at x = 0. Broken lines: distortionless
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Ficure 18. The longitudinal displacement [«,], on the axis of the bar, at distances of 200 cm.
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acting at x = 0. 5 = 1. Period = 100 usec. Radius of bar = 1-27 cm. Broken line: distortionless bar.

Full lines: allowing for dispersion. ® values calculated for distortionless bar from equation (11-7)
with n = 29.
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about a straight line whose slope is approximately the same as that of the undistorted curve.
The ratio of the slope of the straight line of closest fit drawn through the points of the dis-
torted curve, where it is approximately linear, to the slope of the inclined portion of the
undistorted curve gives an idea of the error in the value of the pressure when it is deduced
from the (displacement, time) curve by differentiation and calculation using equation (1-2).
The values of this ratio are given in table 11-3. As far as they go, these figures show that
results derived in this way can be considerably in error, and that the error appears to
increase as ¥ increases when s and other quantities remain constant.

TABLE 11-3
x = 200 cm. x = 600 cm.
. 1 N 1 1
§ 20 i0 3 10
ratio of slopes 0-67, . 1-00, 1-06, 0-665

It is worth while noticing that the approximately linear portions of the distorted (dis-
placement, time) curves are shifted horizontally relative to the inclined portions of the
undistorted curves. This implies that the mean velocity of propagation of the disturbance
is decreased by dispersion, as one would expect from the curves of figures 13 and 14; the
decrease amounts to about 19, for the curves s =35 and 0-59%, for the curve s =44 in
figure 17.

Comparing the curve s = % of figure 17 with curve 4 of figure 18, it is clear that the dis-
tortion increases when s decreases, other quantities remaining constant; comparing curves
A and Bin figure 18, it is seen that the distortion increases as x increases, when the remaining
variables are unchanged. Thus, to minimize the distortion due to dispersion, it is advisable
to use a pressure bar whose radius and length are as small as possible.

These general conclusions agree with those derived from the investigation of the pro-
pagation of a pulse (see § 12), and they are confirmed by experiments to be described later.

(d) The variation of stress and displacement over the cross-section of the bar

The non-uniformity of the longitudinal stress and displacement over the cross-section of
the bar, the deviation of the radial displacement from the simple linear law, and the fact
that the radial stress does not vanish have already been mentioned as results of the general
theory of the vibrations of a cylinder. These results have an important bearing on the
measurement of pressure by the condenser units used in this work, since the aim in all
the experiments is to determine the average normal pressure over the cross-section of
the bar.

When a parallel-plate condenser unit is used, it is the longitudinal displacement averaged
over the measuring end of the bar that is measured, and the non-uniformity of longitudinal
stress and displacement means in general that the ratio of the mean normal pressure to the
mean longitudinal velocity will be a function of a/4 and ¢ instead of being equal to pc,. In
experiments with a cylindrical condenser unit placed so as to project over the measuring
end of the bar, as described in § 4, the quantity measured is the longitudinal displacement
at the surface of the bar; in this case, the ratio of mean normal pressure to the longitudinal
velocity at the surface will only be equal to pc, in the limiting case where a/4 is zero. Finally,
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a cylindrical unit placed on the bar itself, as indicated in § 1, measures the radial displace-
ment at the cylindrical surface of the bar and in general the ratio of this displacement to
the mean normal pressure will not be equal to oa/E.

To determine the errors introduced into the measurements by these effects, it is first
necessary to determine the radial displacement at the cylindrical surface of the bar and the
distribution of longitudinal stress and displacement over the cross-section of the bar for
various values of ¢ and a/4, and then to find the mean values of the stress and displacement
over the cross-section of the bar. The necessary equations for these quantities are easily
obtained from the relationships given by Love (1934), and the expression for the longitudinal
displacement is in fact given by Bancroft (1941).

The differences between our notation and that used by Love and by Bancroft are shown
in table 11-4. The remainder of the notation agrees with that used by Love and by Bancroft.
No confusion need arise from the fact that y, A and C are here used to denote respectively
2n/4 and constants connected with the amplitude of vibration, whereas they have been used
in preceding sections to denote change in capacity, area of cross-section and capacity.

TABLE 11-4
description present work Love Bancroft

axis of the bar Ox Oz Oz
frequency /2w p2m p2m
wave-length A =2mly 2m |y L
velocity of a wave c=0oly ply v
J(Ep) co —
diameter of bar 2a 2a d
(1—20)/(1—0) s - y;
(1+0) c2c3 VA — x
v(SZ—-1)} h n h
v(2Z—1)} K K’ k

At time ¢/, at the point (x,7), let u,, u,, X%, &7, 77* be the longitudinal displacement, the
radial displacement, the longitudinal stress, the shearing stress, and the radial stress respec-
tively. From equations (46), (53) and (54) and the equations immediately preceding equa-
tion (57) in § 201 of Love’s book, it can be shown that

xx = —2uy*A —L}EZa)ﬂ ¢ilretot’), (11-8)
u, = iyA tﬁ}%@ Syertor, (11-9)
u, =—y4 !L}(l%ﬂﬂ gilrsrot’) | (11-10)
X1 = — 2uuyAh J, (ha) f,é0¥r e, (11-11)
77 = 2uy?A ﬁ%i) Sy dreror) (11-115)

* The values of 7 and 77 are not required for determining the errors under discussion, but they have been
calculated for one or two values of a/4 as a matter of interest. It should be noted that the angular displace-

ment u, and the stresses 70, 0 and 0 vanish everywhere.
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where g = the rigidity modulus of the material of the bar = 1E/(1+0¢), 4 = a constant
determined by the amplitude of vibration, and f;, f, f3, f; and f; are functions of ¢, a/4 and
r/a determined by the equations

hady(hr) (1 —SZ) kaJy(xr)

Si= U Z=S2 ey Z=1) Jilka) (11:84)
P ) -
Ji= (SZ"I)*MJI?;%)*((IZ_iZ)) (QZLI)%KaJ;?K(;{)T)’ (11-104)
ﬂzﬂi?)“%(%%’ (11-114)
fi= -2 3 (52— 2002 L e -SZ e iy

Equations (11-9) and (11-94) for the longitudinal displacement agree (apart from a
constant factor) with the equation given by Bancroft who points out in connexion with this
particular case that the value of u, is independent of the sigh chosen in extracting the square
root when evaluating /4 and « and that the function f, cannot be complex. These considera-
tions hold for all the above equations, and the fact that f,, 15, f3, f; and f; cannot be complex
means that each of the quantities ¥, u,, u,, X7 and 77 must be in the same phase or in antiphase
at any instant at all points on a cross-section of the bar.

In order to find the mean values &% and u, of % and u, over a cross-section of the bar for
given values of ¢ and a/4 it is necessary to calculate the values of f; and f,, for different values
of r/a and then find their mean values fj, f,. It is easy to see that

~ a 1
ﬁ:%forfldr=2f0£fld(£), (11-12)
and similarly for f,. This equation, together with equations (11:8a) and (11-94), gives

1—SZ 1'—SZ}

In considering the response of the various condenser units, it is convenient to form the
quotients #,/x%, d,,/x% and u,/aX%, where 4, = iwu, = the particle velocity parallel to Ox,
i, = the mean value of #, over a cross-section, #,, = the value of i, at the cylindrical surface

of the bar, u,, = the radial displacement at the cylindrical surface.
From equations (11-8) to (11-11a), it can be shown that
Ei ¢ fy
Z=(140) %= say), 11-13
LE= (o) Sy (say) (11:13)
Ei
Blia . (140) S22y, (say), (11-14)
CoXX ¢ 1
Eu, A 1+af; :
—="ra T T 7J3a R 11-15

where f,, and f;, are the values of f, and f; when r = a.
52-2
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It follows from the discussion given above that the value of # /xx for a given value of a/4
divided by its value when ¢ = ¢, or a/4 = 0 is a measure of the error which would occur if
a parallel-plate condenser unit were used to determine the pressure when the bar is traversed
by a sinusoidal stress wave corresponding to the assumed value of ¢/4. Similarly, the ratios
of the values of 4, /% and «,,/ax for given values of a/4 to their values for a/4 = 0 determine
the errors in measurements of pressure made with cylindrical condenser units situated so
as to measure the longitudinal and radial displacements respectively.

‘Lx;
6= 0-29
a “
— = 0196 "
A g =1 = . L
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Ficure 19. The variation of the displacements and the stresses over the cross-section of a bar of
radius a. ¥x = longitudinal stress; 7 == shearing stress; 77=radial stress; u, = longitudinal displace-
ments; #, = radial displacement; u,, = radial displacement in distortionless bar.

When a/4 = 0, it can be shown that the expressions in equations (11-13), (11-14) and
(11-15) become equal to unity; from the curves connecting the quantities x4, 4,,, #,, with a/4
it will be possible to estimate the errors of the various types of condenser units when the

pressure bar is traversed by sinusoidal waves.
The results of the numerical calculations are shown in figures 19, 20 and 21; as before,

o has been assumed to be 0-29.
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Figures 194 and 194 show the variation of the stresses and displacements over the cross-
section for two typical values of a/4, namely, 0-196, and 0-935;. In each case, the ratio 7/a
is taken as abscissa, and the ratios 4x%/X%,, +u,/u,g, 414, /u,, +X7[txX, and +77/xx, are
plotted as ordinates, the suffixes ‘0’ indicating values at r = 0. The scale of the ordinates
in the two diagrams differs by a factor 2.

Assuming the constant 4 to be positive, these ratios are taken with the plus sign when the
displacements and stresses near the axis are of the form + (Re) ¢v**e¥) or —i(Re) eitr<+ol’),
where (Re¢) denotes a positive real quantity, and with the minus sign when they are of the
form — (Re) év=+ot) or —i(Re) ér+0), Vector diagrams of the type used in a.c. theory are
given in the figures to show the relative phases of the stresses and the displacements. When
a/4 is very small, the (ufu,,r/a) and (¥x/x%,r/a) curves are horizontal straight lines of
ordinates -+ 1 respectively, &7 and 77 are everywhere zero, and if «,, denotes the radial dis-
placement, it is easily shown that

u . ar
;}’i:—?ﬂw‘zc—l; (11'16)
the curves (iu,,/u,y, r/a) are shown in figures 184 and 184 by chain-dotted straight lines.

When a/4 = 0-1964, the values of X% and u, decrease as r/a increases, whilst the values of
w,[u,, are greater than their values according to the simple theory; the maximum value of
77 is about one-fifth that of ¥* and the shearing stress is small, the maximum value of the
ratio x7/¢xx, being about —0-007.

Comparison of figures 194 and 19 4 brings out the change in the distribution of the stresses
and displacements when a/4 becomes large. At the cylindrical surface, the signs of ¥x and
u, are the same in the two diagrams; when a/4 = 0-935;, the signs change as r/a decreases
from unity to zero, and in the case of «, there is a nodal cylinder, over which the displacement
vanishes, of radius 0-854. Compared with the case of a/4 = 0-196,, the radial displacement
is much greater and its sign is reversed, whilst the radial and shearing stresses have become
comparable with the longitudinal stress.

Figure 20 shows the variation with a/4 of the ratio of the longitudinal displacements
u,, and u,, at the cylindrical surface and the axis respectively. This ratio gradually decreases
from unity as a/4 increases from zero and it becomes zero at about a/4 = 0-37;, corresponding
to zero longitudinal displacement at the cylindrical surface. As a/4 increases, u,,/u,, becomes
negative and a nodal cylinder appears within the bar. When a/4 is about 0-85, u,,/u,, = —1;
beyond this point the displacement at 7 = a is greater than the displacement at » = 0, and
| 4,,/u, | increases as a/4 increases, as one would expect, since the waves degenerate into
Rayleigh surface waves when a/4 becomes large.

The (u,/u,y, r/a) curves of figure 19 and the (u,,/u,y, a/4) curve of figure 20 differ from those
given by Bancroft for ¢ = 0-25. Calculation shows that the difference is not due to the
different values of ¢ assumed in the two cases, and since the equations (11-9) and (11-9a)
agree with equation (6) in Bancroft’s paper, the discrepancy is probably to be attributed to
a numerical error in Bancroft’s calculations.

The effect of the non-uniform distribution of stress and displacement on the response of
the condenser units, when the bar is traversed bysinusoidal waves, can be seen from figure 21,
which shows the functions x,, #,,, 4., defined in equations (11-13) to (11-15) plotted against a/4
as abscissa. The values of a/4 for which these functions were found areindicated in thediagram.
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When a/4 is small, the functions u,, 4, #, are each equal to unity, and all waves of unit
amplitude traversing the bar produce equal response in the particular condenser unit which
is used for a pressure measurement. Beyond the initial region, x, and g, increase and g,
decreases as a/4 increases. As the frequency of the waves increases, the response of the
condenser units to waves of unit amplitude therefore increases when the unit is a parallel-
plate unit or a cylindrical unit measuring radial displacements, and decreases when the
unit is a cylindrical unit measuring longitudinal displacements; this is equivalent to a
magnification of high frequencies relative to low frequencies in the former cases, and con-
versely in the latter case. When a/4 = 0:37;, u,, = 0, which is what one would expect from
figure 20; when a/4 exceeds 0-37;, 4,, becomes negative, i.e. the p.d. developed by the con-
denser unit changes sign. When a/4 is greater than 0-485, y,, is negative and is numerically
greater than unity; in this region, the reversal of sign is accompanied by magnification

relative to low frequencies.

1o

PNCLL Ty

-2:0

~2'5

o \ -

-3-5
Frcure 20. The longitudinal displacements u,, u,, at the axis and
at the cylindrical surface of a bar of radius a.

\

-3.5

In the limit when a/4 becomes infinite, ¢/¢, = 0-5764,, Z = 0-4286,, SZ = 0-2535,. It is
easily shown that in this limit, #, = 1-734g, ,, = 9-482;, 4, = —6-5875 a/A. These limiting
values are indicated in figure 20 by the lines marked ‘a/4—0c0".

It is obvious that the parallel-plate unit is far superior to the two types of cylindrical
condenser units in the range covered in figure 21. The reason for this is clear from figures
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19a and 195, where the (u,/u,, 7/a) curves are seen to be similar in form to the (x%/x%,, r/a)
curves; on the other hand, the values of u,, and «,, are noticeably different from their values
when dispersion is absent.

An estimate of the error when the condenser units are used with a bar traversed by a
non-sinusoidal wave involves a long calculation. In general, the magnitude of the error
for any particular wave form will be determined by #,, #,,, #,, and the amplitudes and fre-
quencies of the Fourier components of the wave, and since the functions u,, 4, #,, refer to
the quotient of particle velocity or gradient of displacement divided by stress, the relevant
Fourier components are those of particle velocity rather than displacement.
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Ficure 21. The behaviour of various types of condenser units with
sinusoidal waves of wave-length /.

Qualitatively, with the parallel-plate unit and the cylindrical unit measuring radial
displacements, one may anticipate that the effect of non-uniform distribution of stresses and
displacements will be to magnify the high-frequency Fourier components relative to the
low-frequency components; this will tend to increase an effect mentioned earlier, namely,
the rounding-off of discontinuities and the superposition of oscillations on the linear portions
of the waves. Considering a cylindrical unit measuring longitudinal displacements, the
peculiar form of the (,,a/4) curve will lead to a very odd form of distortion, since the
Fourier components for which a/4 lies between 0 and 0-37; are partially or wholly cut off
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and components for which a/4 exceeds 0-37, are reversed in sign ; in addition, the components
for which a/4 lies between 0-37; and 0-485 are again wholly or partially cut off, whilst those
components for which a/4 exceeds 0-485 are magnified.

As an example, consider the case of a wave in which the longitudinal displacement on
the axis is trapezium-shaped, as shown in figure 16, with s = {5 and 27/w, = 100 usec. If
B, be the amplitude of the nth Fourier component of the particle velocity, the contribution
of this component to the response of a condenser unit will be proportional to x,f,, 4/, and
4.5, for a parallel-plate unit, a cylindrical unit measuring longitudinal displacement, and
a cylindrical unit measuring radial displacement respectively. In the present case, it follows
from equations (11:5) and (11-6) that

20,[4 —1)¥e=D |
| B, = ‘21[2;0]0( 72 sinmns  (n=1,3,5,...). | (11-17)
Table 11-5 gives the values of a4, ¢/co, Ly, Hg fors T2/ 2[the]o and 72sf, /2w [44], for values

of n up to 29. :
The figures given in this table indicate that, in this particular case, the variation of stress

and displacement over the cross-section will produce serious errors, especially with the two
cylindrical condensers. For example, f,q = 0-034f,, whilst s, fyq = 0-064,, ft,,flyg = — 0-250,
and 1, fyy = 0-324;; the high magnification of the high-frequency components of the wave
relative to the low-frequency components is obvious, and considerable caution must therefore
be exercised in interpreting experimental results obtained with the cylindrical units.

TABLE 11+5. 0=029; s=+5; T =100usec.; a=1-27cm.; x=0

n a/d ¢/eo Hp Hee Her m5,/2] b1 2, /29[ 010
1 0-0255 1-000 1-00 - 100 1-00 0-3090 0:3090
3 0-0766 0-995 1-00 0-99 1-06 —0-0899 —0-2697
5 0-1289 0-985 1-01 0-96 1-16 0-0400 0-2000
7 0-1852 0-962 1-04 0-88 1-32 —0-0165 —0-1155
9 0-2440 0-925 1-10 0-72 1-70 0-00382 0-0344
11 0:3350 0-836 120 0-29 2-80 0-00203 0-0223
13 0-4577 0-721 1-39 —0-60 4-69 —0-00479 —0-0623
15 0-5896 0-646 1-56 —1-90 6-71 0-00444 0-0666
17 0-7022 0-616 1-61 —-3-05 7-81 —0-00280 —0-0476
19 0-8019 0-602 1-63 . =390 8:42 0-00085, 0-0163
21 0-8921 0-594 1-64 —4-60 8:79 —0-00070 —0-0147
23 0-9823 0-586 1-68 —5-32 9:03 —0-00153 —0:0352
25 1-069 0-583 1-70 —6-00 9:21 0-:00160 0-0400
27 1-156 0-580 1-71 —6:53 9-32 —0-00111 —0-0300
29 1-244 0-577 1-72 —7:17 9:40 0-00036, 0-0106

The errors will clearly decrease as the sharpness of the discontinuities in the disturbance
decreases, and while it may be necessary to use a parallel-plate unit with very sharp pulses,
it may be possible to use one or other of the cylindrical units with pulses in which the rate
of change of pressure with time is not too large. For example, in some cases, it is very con-
venient to use a cylindrical condenser measuring radial displacements, since this type of
unit measures the pressure rather than the longitudinal displacement; in other cases it
may be convenient to use a cylindrical condenser measuring the longitudinal displacement
at the end of the bar, since this type of unit possesses constant sensitivity even when dealing

with large longitudinal displacements.
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These considerations may be illustrated by the three photographs shown in figure 22, for
which I am indebted to Dr E. Volterra; these records were taken with a cylindrical unit
which measured the radial displacement on a pressure bar, 6ft. long and 1in. diameter.

Ficure 22. Oscillograms of pulses due to the impact of bullets. Pressure bar: length = 6 ft., dia-
meter = 1 in. Condenser unit: cylindrical type, measuring radial displacement. Period of timing

wave = 46-5 usec.
- (a) (4) (e)

type of bullet round-nosed round-nosed cone-shaped
velocity of bullet (ft./sec.) 1135 1171 1350
distance of condenser unit from pressure end of bar (cm.) 115 35 115

Vol. 240. A. 53
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The difference between the internal radius of the insulated cylinder of the condenser unit
and the radius of the bar was t§in. approximately, and the length of the insulated cylinder
was 1-65 cm. The period of the timing wave was 46-5 ysec. In the experiments of figures 22a
and 22, the polarizing e.m.f.,, E, of § 5, was 480V, and in the experiment of figures 22¢,
980 V; the values of the electrical components in the feed unit and in the amplifier were the
same in the three experiments. The distance from the condenser unit to the pressure end
of the bar was 115 cm. in the experiments of figures 22a and 22¢, and 35 cm. in the experiment

of figure 225.
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Ficure 23. Analysis of the record shown in figure 22a.

Figures 224 and 226 show the radial displacement due to the impact of an ordinary round-
nosed 0-22 lead bullet on the pressure end of the bar; the speed of the bullet was 1135 ft./sec.
in figure 22a and 1171 ft./sec. in figure 224. The (pressure, time) curves for these impacts
are similar to the curve shown in figure 12; if a bullet moves with a speed equal to the average
of the above speeds, and if the bullet behaves as a fluid, the time of impact is about 34 usec.,
the maximum pressure in the bar is about 6-8 x 108dynes/sq.cm., and the time taken by
the pressure to increase from zero to its maximum value is about 9 usec.

The striking feature of these two photographs is the obvious distortion of the main pulse
and the presence of a train of high-frequency oscillations following this pulse. It is clearly
impossible to derive an accurate (pressure, time) curve from these records.

A full discussion of the distortion which appears when a parallel-plate unit is used with
a similar pulse is given in §12; in the meantime, comparison of figures 224 and 224 with
figure 12 immediately brings out the fact that the slight oscillations of pressure which occur
in the rising part of figure 12 (as shown by the periodic displacements of the experimental



STUDY OF THE HOPKINSON PRESSURE BAR 425

points about the smoothed (¢, £) curve) are very much smaller than the corresponding oscilla-
tions in figures 22a and 226, whilst the high-frequency oscillations which follow the main
pulse in the latter figures are absent from the former. This agrees with the conclusion reached
above, and experiments to be described later (see figure 34) do in fact show that with a
parallel-plate condenser unit, much sharper pulses are necessary to produce measurable
amounts of high-frequency oscillations at the tail of the main pulse.
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Ficure 24. Analysis of the record shown in figure 225.

It is interesting to consider the periods of the oscillations in the records shown in figures
22a and 226 from the standpoint of the method of stationary phase (see subsection (4) of
this section). For this purpose, the analysis of the record of figure 224 is given in figure 23
and that of the record of figure 224 in figure 24. In these diagrams, time #’, reckoned from
the beginning of the impact of the bullet on the pressure end of the bar, is plotted as abscissa
and pressure p, deduced by means of equations (1-3) and (A-1-4), is plotted as ordinate.
The values of p and ¢’ deduced from the readings of the measuring microscope are indicated
by dots. The maximum pressure (6-8 X 108dynes/sq.cm.) calculated from the speed of the
bullet by equation (9-1) is shown in the diagrams by the short horizontal line marked
‘p (calc.)’ on the p-axis.

To a first approximation, the disturbance at a given point on the bar may be regarded as
originating in a pulse of infinitely short duration, concentrated at the pressure end of the
bar. With a pulse of finite duration, this assumption cannot be expected to be true for the
values of ¢’ corresponding to the main pulse, but it is a reasonably good approximation as

far as the later stages of the record are concerned. On this assumption, the variation of
53-2
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the period, 7, of the dominant groups with time #, at x = 35cm. and x = 115cm., can
be determined from the non-dimensional curves of figure 15, since ¢ = 1:27cm. and
¢y ~ 5 x 105cm./sec. The values of 7, corresponding to x = 115 cm. are shown in figure 25
in the curves marked ‘22 (a) (1st mode)’ and ‘22 () (2nd mode)’, derived respectively from
curves (1) and (2) of figure 15. Figure 25 also shows the values of 7, corresponding to
curves (1) and (2) of figure 15 for x = 35 cm. ; these curves are marked ‘22 (5) (1st mode)’
and ‘22 (b) (2nd mode)’. The values of 7, for the first mode are also shown diagrammatically
in figures 23 and 24 by the small sine-curves placed at intervals of 10 usec.; the length of
these curves represents to scale the value of 7}, for the value of #' corresponding to their
mid-points.
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Fieure 25. (T, ') curves for the records of figures 224 and 225.
T, = period of the groups which-are dominant at time #'.

The values of # included in the (p, ") curve of figure 23 range between ¢ = 230 usec.
and ¢ = 330 usec. For vibrations of the first mode, the duration, at x = 115 cm., of a
disturbance originating in an infinitely thin pulse at the pressure end of the bar is about
1-64 x 230 = 378 usec., whilst the duration of the impact of the bullet is about 35 usec. ; the
duration of the disturbance, allowing for the finite time of impact of the bullet, is thus about
413 usec. The curve of figure 23 would therefore have to extend to ¢ = 643 usec. in order to
include the whole of the disturbance, and, as figure 25 shows, the actual record in fact covers
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only the main pulse and the initial stages of the tail, as far as vibrations in the first mode are
concerned. The (7, ¢') curve (1st mode) will show two or more values of 7}, for each value of ¢
when ¢ >1-735 x 230> 399 usec., so that the record stops short even of this point. It follows
that if the vibrations excited by the bullet impact belong to the first mode, then the whole of
the tail appearing in figure 23 should be composed of simple harmonic vibrations gradually
decreasing in period from 15-7 usec. at ¢’ = 255 usec. to 10-5 usec. at ¢’ = 350 ,useé. If, how-
ever, the disturbance includes vibrations of the second mode, figure 25 shows that, when ¢’
exceeds 256 usec., two vibrations with periods ranging between 4-0 and 6-4 usec. will be
superposed on the single vibration contributed by the first mode. In these circumstances,
the resultant curve will show the sudden changes of slope which are characteristic of curves
compounded of two or more vibrations which are varying in period and phase (see figure 24).
There is no indication of this in the tail of figure 23, implying that if any vibrations of the
second mode are present their amplitude is very small in comparison with those of the first
mode. This conclusion is confirmed by the values of the periods of the oscillations in the later
stages of the curve of figure 23; these values are shown in figure 25 by crosses in circles and
the agreement between these points and the calculated (7},#) curve for the first mode is
reasonably good. As far as this experiment is concerned, it may be concluded therefore that
the waves excited by the impact of the bullet belong to the first mode of vibration.

Considering figure 24, the range of ¢’ covered in the record extends from ¢’ = 70 usec. to

" = 182 usec. The duration of the disturbance; allowing for the finite time of impact of the
bullet, at the distance corresponding to the record (35cm.) is about 155 gsec., assuming
that the vibrations are of the first mode; the record would have to extend from ¢ = 70 usec.
to /' = 220 usec. in order to contain the whole of the disturbance. The range of #' covered in
figure 24 is thus a little less than the calculated duration of the disturbance, and, as figure 25
shows, the record should include the major portion of the high-frequency tail (1st mode),
including that portion which consists of two or more superposed oscillations of different
frequencies. The sudden, irregular changes of slope shown by the major part of the tail of
the record of figure 24 agrees with this conclusion.* Although it is difficult to test matters
quantitatively in this case, the sine-curves shown in the figure indicate that the periods of
the oscillations at the end of the main pulse are in fair agreement with those deduced from
figure 25.

Figure 22¢ shows a record of the radial displacement at a distance of 115 cm. from the
pressure end of the bar, when the latter was hit by a lead bullet which had been machined
so that the portion projecting from the cartridge case was in the form of a cone, 1 cm. axial

" length, and 32° vertical angle; the speed of the bullet was 1350 ft./sec. It is difficult to make
an accurate estimate of the rate of rise of pressure and the maximum pressure in this case;
in the initial stages, the bullet behaves as a fluid and the pressure increases parabolically
with time; owing to the finite strength of the bullet, the parabolic law will later break down
and ultimately the pressure will decrease. The maximum pressure will probably be reached
when about 0-7 cm. of the bullet has been disintegrated and the maximum pressure in the
bar is thus about 5 x 108 dynes/sq.cm. and it occurs about 17 usec. after the beginning of the
impact. In this experiment, the rate of rise of pressure is therefore much less than in the

* The regularity of the last two waves in the diagram is due to the small difference in the values of the
periods of the two dominant groups in this region.
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experiment corresponding to figures 22a and 225, where the time to maximum pressure is
about 9 usec.

The record of figure 22¢ shows comparatively little trace of the oscillations which are so
characteristic a feature of figures 22a and 226 it therefore appears that the cylindrical unit
measuring radial displacements can be used without excessive error due to oscillations,
provided that the rate of rise of pressure does not greatly exceed that corresponding to

figure 22¢.

12. THE PROPAGATION OF A PULSE IN A BAR OF FINITE LENGTH
ACCORDING TO LOVE’S APPROXIMATE WAVE EQUATION

According to the simple theory, the differential equation for the longitudinal displace-
ment, u,, at a point abscissa «, at time ¢', in an extensional stress wave propagated in a bar is

Pu, Edu, 0%,

iy ae o (12:1)

Considering a bar of length /, let a constant force P per unit area be applied at time ¢’ = 0
to the end x = / (the pressure end) in the direction O, the other end, x = 0 (the measuring
end) being free; it can be shown (Timoshenko 1929, p. 208) that the subsequent displacement
at the point abscissa x at time ¢ is given by the equation

P2 2P v (—1)"  nmx nmcyt’
~ om - (L—cos—— =1,2,... :
* 2m  w%im ngl nr S ( cos— ) (n 25 .00), (12-2)

where m = mass per unit cross-sectional area of the bar.

The first term in this equation represents the displacement of the bar as a whole on account
of the acceleration P/m due to the force P acting for time #, whilst the infinite series of
the second term corresponds to the vibrations which are superposed on this motion. The
contribution of the nth term in this series to #, is equal to the displacement at the point x at
time ¢ when a free-free bar of length / executes stationary longitudinal vibrations of period
21/nc, = Ty/n, where T; = 2l/c, is the period of vibration of the bar in its fundamental mode.
The waves concerned in this vibration have velocity ¢, and wave-length 2{/n.

From the solution (12-2) the effect of a pressure pulse in which the pressure applied at
x = [ rises instantaneously from zero to a constant value P at time ¢ = 0 and falls instan-
tancously from P to zero at time # = 7" can be found by superposing the solution for a
pressure — P applied at ¢’ = 71" at x = [ on the solution given in equation (12-2). By con-
sidering the point x = 0, where u, = £, it is easy to show that the solution obtained in this
way agrees with the result which can be derived more directly from equation (1-2), and which
is given with slightly differing notation in equation (A-1-1).

If the effect of the lateral inertia of the bar is taken into consideration, and if K is the
radius of gyration of the cross-section of the bar about Ox, the wave equation takes the form
given by Love (1934, §278),

2u 0*u 0%u
are K g T g (12:3)

where the effect of the lateral inertia is represented by the second term on the left-hand side

of the equation.
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Since this section deals only with displacements parallel to Ox, the suffix in u, may be
dropped and the longitudinal displacements in the bar denoted by u.

Equation (12-3) may be written in the form

2 2 4
%%—c%(%—l—HZ(—?%@) — o, (12-4)
where the parameter H, which is equal to 0K/c,, is of the dimension of time.

This section is concerned with the derivation of the solution of equation (12-3) for the case
of a uniform pressure P applied and sustained at the end x = [ of the bar, the end x = 0
being free; this solution, which is analogous to the solution (12-2) of the simple equation
(12-1), is then extended to cover the case of a square-topped pressure pulse of duration 7.
The section also includes a discussion of the bearing of the theory on the experimental
results.

(a) The phase and group velocities of sinusoidal waves
For sinusoidal waves of unit amplitude, « will be of the form

u = gilyx+ot’)

in the notation of §11; substituting in equation (12-3), it is easy to show that the phase
velocity ¢ of sinusoidal waves of wave-length 4 is given by the relationship

62 = c3/(1+ 4n202K?/ A2). (12-5)

When the bar is a circular cylinder of radius @, K? = }4?; neglecting terms of the fourth
and higher powers in a/4, equation (12-5) agrees with the equation (Love 1934, § 201)

¢ = ¢y(1 —m%02a%/42), (12-54)

which is derived from the Pochhammer-Chree theory as the second approximation for the
phase velocity c.
From equation (11-2), the group velocity ¢, corresponding to equation (12-5) is found to be

¢, = 6ol (1+4m202K2/A42)}, (12-6)

The (¢/cy,a/A) and (c /ey, a/A) curves for a bar of circular cross-section, derived from
equations (12-5) and (12-6), are given by the dotted curves labelled (14) in figures 13 and 14
of §11. For small values of a/4, these curves agree, as they should, with the curves (1) which
are derived from the accurate theory of §11. As a/4 increases, the curves begin to differ, and
when a/4 becomes infinite, the values of ¢ and ¢, given by the accurate theory approach the
velocity ¢, asymptotically, whereas the values of ¢ and ¢, given by equations (12-5) and (12-6)
tend to zero. Now when the phase and group velocities in a dispersive medium become zero
for infinitely short wave-lengths, it can be shown (Havelock 1914, § 34) that if a discontinuity
is possible at any point in the medium, it exists permanently at that point, i.e. the disturbance
is propagated with infinite velocity from the source. In this respect the propagation of a
pressure pulse in a bar, according to equation (12-3), is similar to the instantaneous pro-
pagation of a discontinuity in a deep liquid under gravity, where the phase and group
velocities are proportional to /4.
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In both cases the anomaly is due to the incompleteness of the theory on which the result
is based. In the latter case the liquid is supposed to be incompressible; when the com-
pressibility of the liquid is taken into account, a finite time elapses between the initiation of
a disturbance and its appearance at a finite distance from the origin. Similarly, in the case
of the bar, the anomaly would disappear if it were possible to use the accurate equations
of §11.

The method of stationary phase and figure 15 show that the solution derived from equation
(12-3) will differ in other respects from the solution which would be given by the accurate
theory. The (7,/T,,t[3T;) curves deduced by the method of stationary phase are shown in
figure 15, where the curves for the accurate and approximate theories (1st mode) are marked
(1) and (1a) respectively. Itis clear from the curves that they give different values of 7, /T,
for the same value of #'/17}. Again, considering a point at a finite distance from the origin,
as has been mentioned in § 11 (), the disturbance represented by curve (1) is of finite dura-
tion, due to the fact that the (c,/cy, a/4) curve shows a minimum at which ¢ /c, differs from
zero. In the case of curve (1a), however, the disturbance is of infinite duration, due to the
circumstance that, in this case, ¢,/c, tends to zero as a/4 becomes infinite.

These considerations indicate that the solutions derived from equation (12-3) will not
be correct in all respects; nevertheless, the error in the main features of the results will
probably be small if the important terms in the solution involve only values of @/4 which
lie in the region where the difference between the curves (1) and (14) in figures 13, 14 and

15 is small.
(b) The displacement due to a sustained force acting on the pressure end of the bar

Considering first the case of a constant pressure P applied at time ¢ = 0 to the end x = [
of the bar, in the direction Ox, a solution of equation (12-4) is required, subject to the

following initial and boundary conditions:

(a) u= gl;, == 0, when ¢ = 0 and 0<<x<C/.

u '
(b) PR when x = 0, # =0.
(¢) At the end x = [, the applied pressure P is equal to the elastic stress in the bar, i.e.
P = E(lu, when x=1{ ¢'>0.
dx

The required solution can be obtained by the use of the Laplace transform (see, e.g.,
Carslaw & Jaeger 1941, chaps. 4, 5 and 7). In order to conform with the commonly
accepted notation associated with the Laplace transform, it is necessary to use the
symbols u, p, 7, # and M in the next few paragraphs to denote quantities different from
those which they denote in the remainder of this report.

If p denotes here a positive number or a number whose real part is positive, then when
equation (12-4) is multiplied by ¢~#"dt’ and integrated with respect to # from 0 to infinity,
the equation becomes an equation in #(p), the Laplace transform of u, defined by

u(p) = f e Pu(t) dt.

0
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Since the initial displacements and velocities are zero, equation (12:4) becomes

,0%u u 0%u
Pru—cia s HY 5 5=

0%u pu B )
The solution of this equation is
%= Nsinh — 2% + N’ cosh — L (12-8)

6o/ (1+Hp?) 6o/ (1 Hp?)
where N and N’ are constants to be determined from conditions (b) and (¢) above. In terms
of u, these conditions become

, du_ . _ , du P
x:O, t}o, ax O x——l, t>0, (Tx—-—p‘E‘,
.. _ . Pey /(14 H??) o pl
e V=0, =g fsinh o
px

9,9 cosh — = 3
Thus a:PCO'\/(;?;;Hp ) : cO'\/(]‘;EHp ) (12.9)

simh )

To determine % in terms of u, we use the inversion theorem, namely, that if

u(p) = [ ety ar

and | () | is less than Me#', where M and p are positive constants, then

no 1 TH g
u(t') = 27723,1_{2 . e u(A) dd
where A = y+1w is the complex variable, y> g, and the integral is taken over a path in the
complex plane of A.

Thus, from equation (12-9),

Ax
joo 212y  COsh 272\
v Pcp vtio /(14 H?\%) A ¢o /(1 4+H?A )d/l. (12-10)
2mE ), i A2 sinh Al
con/ (1 + H?22)

The integrand is a single-valued function of A with a triple pole at A = 0, and simple poles
at the points determined by sinh [Al/c, /(1 +H?\?)] = 0, A + 0, i.e. at the points given by

Mfcy = +mni J(1+H??) (n=1,2,3,...),
or A = +nmicy/. /(I +m2H?n%c3).

In addition, as n—>00, A—+1/H, i.e. the set of simple poles has two limit points which are
essential singularities of the integrand.

Considering a suitable closed circuit in the complex plane in the usual way, the value
of the integral in equation (12:10) can be shown, by Cauchy’s theorem, to be equal to 2m

Vol. 240. A. 54
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times the sum of the residues of the integrand at its poles; by excluding the two limit points
by small circles and proceeding to the limit when these circles are infinitesimally small,
it can be proved that the limit points make no contribution to the integral.
The residue at the pole 1 = 0 is
¢ ’2+ xr 1 +H2()0
ol "2c, 6c, I

The residue at the poles A = 4-nmic,/ (1> 4-m*n*H?5)? is
(—1)71 2

%} 2+ n?n2H2c

cos ™ 7 exp [ £ nmicyt | J(12-+m*n2H?c3)].

The sum of the residues at the poles is thus

cot'? 4 x2 1  H?, 2l 3 (=1 1 nmx nmcyt’
2l

Sle, 6oy T 1 e w2 1m0 pnrg)

where ¥ = nHey/l. Hence, from equation (12-10),

Peyfcgt’> x> 1 H, 2l & (— ) 1 nmx nmeyt’ )
“E U2 "ol 6ot T w2 n S

TR L I g

Since ¢ = E/p and m = pl, this equation may be written
P2 PH? 2P (n*(x® 1\ 2 (—1) 1 nx nmcyt’ )
%{'ﬁ“ﬁ@{4@‘ﬂ“gﬁﬁ“me2” oS ity (1212)

2 /42 o (__1)n '
Remembering that % (;;2—(;]3) => ”(‘gzl)_ cos fll;f (—l<x<l),
n=1

equation (12-12) may be written in the form

r2 2 2 o (_ 1\n
_ P +PH 2Pl Z( 1) (co nmx

2,2 2
2m  m  wEm,S, n

s T) (1 ” 1‘422@ cos 1¢(71226-071t2¢?‘}) - (12120)

When H = ¢ = 0, the solution becomes identical with the solution of the simple theory,
given in equation (12-2).

In the general case, equation (12-12a) shows that u consists of (1) the displacement
4 Pt'2/m of the bar as a whole, due to the force P acting on a mass m for time ¢'; (2) the dis-
placement PH?/m, which represents a very small, constant displacement of the bar as a
whole, independent of time, and connected with the instantaneous propagation of disturb-
ances which is implicit in the present theory; (3) an infinite number of vibrations which are
superposed on (1) and (2). The nth term in the series represents the displacement at the
point x at time # when a free-free bar of length [ executes longitudinal vibrations of period
21/ (1+-n*)?) [ncy = 2{/nc, which agrees with the usual expression for the period of the
vibration of a free-free bar in the nth mode, when lateral inertia is taken into account. The
waves concerned in this vibration have velocity ¢ and wave-length 2//n.

The displacement & of the measuring end of the pressure bar is obtained by substituting
x = 01in equation (12-12). In the remaining part of this section the discussion will be limited
to bars of circular cross-section ; thus

Y2 = m2o?(a?/20%). (12-13)
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If ¢, = PI/E = extension of the bar under a static load P per unit area, and as before
T}, = 2l/c, = the time taken by a longitudinal wave of infinite wave-length to traverse the
bar twice, then, from equation (12-12), {/e, may be written in the following non-dimensional

form: E 2% 92 1 22 (—1) 1 omnt’
P P BN Al N ({2 h

This equation shows that £/e, is a function of ¢, '/} and a//, and the similarity relationships
which have been given in the preceding section will clearly hold in the present case.

To determine the values of /e, for given values of ¢, ¢/l and ¢'/T}, it becomes necessary to
find the sum of the infinite series in equation (12-14); there does not seem to be any short
method of doing this, so that each term in the series has to be evaluated separately and the
sum found by adding these terms. A large number of terms has to be taken to obtain reason-
able accuracy in the results, since the series converges comparatively slowly. Assuming, as
in §11, that ¢ = 0-29 and ¢, = 5 x 10%cm./sec., calculations have been carried out for two
bars denoted by 4 and B; for bar 4, a = 1-27cm. = 0-5in., [ = 193-5cm. = 6-35ft., and for
bar B, a = 1-905cm. = 0-751in., [ = 670-;cm. = 22ft. The value of % is 1-786 x 1075 for bar
A and 3-349, x 1076 for bar B, whilst 7, = 774 usec. for bar 4 and 2682 usec. for bar B. In
each case, the calculations extend from ¢'/7}, = 0-485 to about '/} = 0-57.

In the calculations, some eighty or ninety terms of the infinite series of equation (12-14)
have been evaluated and summed for each value of #'/7}; in general, this number is necessary
to ensure that the error due to the omission of the remaining terms of the series is small.
The accuracy of the results of calculations made with this number of terms may be gauged
by considering the value of the ratio §,/e,, where &, is the displacement at the measuring end
of the bar when distortion is absent. On the one hand, £,/¢, can be determined from equation
(12-2), i.e. from equation (12-14) with = 0. On the other hand, by integrating equation
(1-2) for the case where the applied pressure is constant, it is found that if ¢ <7;/2, £,/e, = 0

and if ¢ >7;/2, then Eofe, = (42 |T,) —2; (12-15)

(12-14)

this is clearly the true value of § /e, i.e. the value of the ratio when the summation in equation
(12-14) is taken to infinity.

In table 12-1, the third column gives the value of § /¢, calculated from equation (12-2),
the summation being stopped at the value of n (‘n,,,, ’) given in the second column; the last
column in the table gives the value of /¢, calculated from equation (12-15). The agreement
between the figures in the last two columns shows that the errors are reasonably small when

Nmax. 1S about 80.
TaBLE 12-1
&,/e, calculated from
¢/ T, ftmax. eqn. (12-2) (eqn. 12-15)
0-490 78 0-00040 0-00
0-495 83 —0-00069 0-00
0-500 82 0-00229 0-00
0-505 80 0-01939 0-02
0-510 85 0-04040 0-04

The results of the calculations for the general case are given in table 12-2, in which
t (=t —1T) denotes time reckoned from the instant at which a wave travelling with velocity

¢, arrives at x = 0.
54-2
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The results are shown graphically in figures 26 and 27; the former is in terms of non-
dimensional variables, and it gives the variation of /e, with ¢'/T,. In the latter, time ¢ is
plotted as abscissa and £'{/e,, where £’ is a constant, as ordinate; for bar 4, £"is unity and for
bar B, £'is equal to 3-465, which is the ratio of the values of 7} for bars B and 4. This procedure
makes the displacement &, and the velocity £, at a given time ¢, the same for the two bars if
the effect of the lateral motion is neglected, since equation (12:15), which applies under

these conditions, may be written
Cole; = 41/1.

L I N E St T R B I R | l I T ' T T I f
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FiGure 26. (§/e, t'/T}) curves for a sustained pressure. & = displacement at measuring end of bar;
¢, = extension of bar under static load; # = time; 7;/2 = time taken by a wave of velocity ¢, to travel
the length of the bar.

Before discussing these results, it will be convenient to consider how far they are likely
to differ from those which would be given by the accurate theory of § 11 if it were possible
to derive a pulse solution using this theory. Any difference between the results will be due
to the fact that the two theories lead to different values of ¢/¢, for the same values of ¢ and a/4,
and curves (1) and (14) in figure 13 indicate that the difference in ¢/c, is small for small
values of @/ and that it increases as a/4 increases. Considering the nth term in the infinite
series of equation (12-14), 4 = 2{/n and a/4 = na/2l; a/2 is equal to 0-003280 for bar A4
and 0-001421 for bar B.
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For bar A4, table 12-3 gives (i) the amplitude (—1)"/n%(1+n%)?) of the vibration repre-
sented by the nth term (z = 1,10, ..., 90) in the infinite series of equation (12-14), (ii) the
value of a/4 for the wave concerned in this vibration, (iii) the value of ¢/c, according to
equation (12-5), (iv) the value of ¢/c, according to the accurate theory, (v) the ratio of the
two values of ¢/c,.
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Ficure 27. (k'E/e, t) curves for a sustained pressure. ¢ = time reckoned from instant
of arrival of wave of velocity ¢, at the measuring end of the bar.

TABLE 12-2
bar 4 bar B

t|T, ¢ (usec.) Tinax, £le, ¢ (usec.) Tmax, Ele,

0-485 —11-61 85 0-00024 —40-2 84 0-00015
0-490 - 774 78 0-00087 —26-8 81 0-00021
0-495 — 387 83 0-00268 —13-4 85 0-00075
0-500 0 82 0-00736 0 84 0-00404
0-505 3-87 80 0-01692 13-4 85 0-01637
0-510 774 85 0-03373 26-8 91 0-03994
0-515 11-61 76 0-05685 40-2 67 0-06107
0-520 15-48 82 0-08185 53-6 85 0-08196
0-525 19-35 88 © 0-10287 67-0 85 0-09994
0-530 23-22 - 85 0-11968 80-4 85 0-11993
0-535 27-09 85 0-13807 93-8 85 0-13988
0-540 30-96 83 0-16036 107-2 80 0-16014
0-545 34-83 91 0-18145 120-6 — —

0-550 38-70 90 0-19960 134-0 85 0-20015
0-570 — — — 187-6 82 0-28002

0-575 — — — 201-0 84 0-30007
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Even when n = 90, the difference between the two values of ¢/¢, is only 7 %,, and, at the
same time, the amplitude of the term is only about 4455 of the amplitude of the first term.
The difference between the results of the present theory and the accurate theory cannot

therefore be large.

TABLE 12:3. Bar 4

¢leo

n 1/n? (= 1)/n?(1+n2y?) ald eqn. (12-5) §11 ratio

1 1 1 0-00328 1-000 1-000 1-00
10 0-01 0-009980 0-0328 0-999 0-999 1-00
20 0-0025 0-002482 0-0656 0-997 0-997 1-00
30 0-00111 0-001093 0-0984 0-993 0-993 1-00
40 0-000625 0-000607 0-1312 0-986 0-986 1-00
50 0-000400 0-000383 0-1640 0-978 0-970 1-01
60 0-000278 0-000261 0-1968 0-969 0-956 1-01
70 0-000204 0-000188 0-2296 0-959 0-937 1-02
80 0-000156 0-000149 0-2624 0-948 0-908 1-04
90 0-000123 0-000108 0-2952 0-935 0-877 1-07

For bar B, when n = 90, a/4 = 0-1279, the two values of ¢/¢c, differ by less than 0-5 %,
and the amplitude of the term is about g4 of the amplitude of the first term; the difference
between the results of the two theories is therefore even less than in the case of bar 4.

The curves given in figures 26 and 27 indicate that dispersion, in so far as it can be repre-
sented by the d*u/dx?dt’? term in equation (12-3), has two effects on the (£, £) curves.

(1) The initial portions of the curves are not straight lines and they do not intersect the
t-axis at a finite angle as they would do if dispersion is absent; instead, they are curved and
tangential to the ¢-axis. It should be pointed out that the curves begin to rise before the
arrival of the wave of velocity ¢, at the measuring end of the bar; this effect is to be expected
from the discussion given in the first part of this section.

(2) Beyond their initial curved portions, the (£, ) curves oscillate, to varying degrees,
about the straight lines which would be obtained with a distortionless bar. The periods of
these fluctuations agree reasonably well with those given by the group-velocity theory of
§11 (). In figure 26, for bar 4, one half-period of the oscillation (reckoned as the difference
in the values of #’ corresponding to consecutive intersections of the (§/e,, #'/T;) curve with the
straight line for a distortionless bar) extends from ¢/7;, = 0-503 to /T, = 0-519, giving a
period of 4% 0-016 x 73 = 0:064 x 3T, corresponding to a mean value of #'/§7; = 1-022.
For bar 4, [ = 193-5cm., a = 1:27 cm., and therefore 17 = 193-57,/1-27 = 152-57; from
figure 26 the period of the oscillation is thus 0-064 x 152-57, = 9-767,. From curve (14) of
figure 15, the value of 7, corresponding to #'/§7; = 1-022 is 10-47;. The two succeeding
half-oscillations in figure 26 give periods equal to 6-77, and 6-17, when ¢'/37j is 1:044 and
1-07 respectively; from curve (1a) of figure 15, the corresponding values of 7, are 7-37,
and 6-17,, respectively. It is worth noticing that the values of 7, given by the accurate
theory (curve (1) in figure 15) for ¢'/3T}, = 1-022, 1-044 and 1-07 are 11-67, 8-47, and 7-67,
respectively.

The discussion given in connexion with table 12-1 shows that the two above effects are
real characteristics of the propagation of waves in the bar, and that they are not due to errors
such as would be caused, for example, by taking too few terms in the summation in equation
(12-14) ; comparison of figures 26 and 27 with figures 17 and 18 shows that the main features
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of the distortion in the two cases agree as well as one would expect when comparing the
distortion of a pulse with that of a periodic wave of the type considered in § 11, in which the
duration of the inclined portions of the wave is comparable with its period.

Experimental evidence for the existence of the above forms of error was obtained in a
series of experiments in which the pressure bar was used with a parallel-plate condenser
unit to measure the pressure in detonation waves in explosive gaseous mixtures contained
in a long tube. In the initial portions of such waves, the pressure rises practically instan-
taneously from zero to a constant value which can be calculated from thermo-chemical data.

The phtograph shown in figure 28 is an enlargement of a plate taken when a pressure bar
lin. diameter, 2ft. 2in. long, was sealed into the end of a steel tube in which a mixture of
unknown composition, containing hydrogen, oxygen and air, was detonated by a spark;
the bar and the explosion tube were coaxial, so that the apparatus measured the stagnation
or Pitot pressure in the wave.

Ficure 28. Oscillogram of the pulse due to the Pitot pressure in a detonation wave in a mixture of
air, oxygen and hydrogen. Pressure bar: length =2 ft. 2in., diameter = 1in. Condenser unit:
parallel-plate type. Upper trace: timing wave, period = 41 usec. Middle trace: amplified p.d.
from condenser unit. Lower trace: datum line.

The analysis of the record is given in figure 29, in which the ordinate is the vertical deflexion
& on the photographic plate of the recording spot of the oscillograph, and the abscissa is the
horizontal distance, X — X,, on the plate, reckoned from the point where the recording spot
begins to move vertically upwards. The points which were measured with the microscope
are indicated in the diagram, which also gives the relationships connecting the displacement
§ with d and time with X — X,

In this diagram the curve passing through the measured points is initially concave upwards
and then it oscillates about the straight line of closest fit drawn through these points. If this
straight line is produced back to cut the axis of time, the length of the intercept on this axis
corresponds to 4+5 usec.; the mean of the length of this intercept for this and two other plates
taken under the same conditions is 4-6 usec.

Whilst the initial curvature of the (6, X—X,) curve of figure 29 and the fluctuations of
the experimental points about the smoothed curve agree qualitatively with the effects of
dispersion in the pressure bar, it is important to make certain that they are not spurious
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effects due to imperfections in some other part of the apparatus. The main source of effects
of this type, apart from the bar, is the amplifier, and an analysis of the behaviour of the
amplifier was undertaken in order to see whether defects in the amplifier could account for
the effects in question. This analysis shows that, whilst imperfections of the amplifier are
partly responsible for the initial curvature of the (8, X—X;) curves, the effect actually
observed is much too large to be attributed to the amplifier, since the length of the intercept
on the f-axis, due to the amplifier alone, is only about 0-4 gsec., i.e. about one-tenth of the

observed value.
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FiGure 29. Analysis of the record shown in figure 28.

Considering the oscillations of the experimental points in the record about the straight
line of closest fit, it should be pointed out that the scatter of the points actually measured is
greater than the error in the measurement of the photographic plate; for example, in the
case of the point at X— X, = 2-5 mm., the vertical distance between the measured point
and the straight line is equivalent to 0-02mm. on the plate, which is about four times as
great as the normal error in measuring a plate. These oscillations are undoubtedly due to
dispersion in the bar, and their periods agree with the values deduced from curve (1) of
figure 15. In figure 29, the first well-defined half-oscillation extends from X — X, = 1-9 mm.
to X— X, = 3-:056 mm. ; the corresponding value of the period is 14-88 usec., which is equal
to 6-127,, since a = 1-27cm. and ¢, = 523 X 10°cm./sec. The mean value of ¢'/}7; for
this half-oscillation is 1-126; the corresponding value of 7, from figure 15 is 6:17, from
curve (1), or 4-727, from curve (1a). The next half-oscillation in figure 29, extending
from X— X, = 3-:056 mm. to X— X, = 4-1 mm., corresponds to ¢'/37, = 1-18; and the period
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is 5:587,; from figure 15 this value of #'/37, gives T}, = 5-3T from curve (1), and 7}, = 3-8T,
from curve (1a). It is interesting to note that the experimental results agree better with the
results of the accurate theory (curve (1)) than with those of the approximate theory of this
section (curve (1a)).

12 T ‘ | I I , | l I |
|~ PRESSURE BAR!- LENGTH = 2™-2”; olameTER =1 /
1o ORDINATES ANO ABSCISSAE i~ DISTANCES

. ON PHOTOGRAPHIC PLATE é
| E -54xi6% }
08l —@my 1-0-00938 /
§ | X =589(X-X,)
(memy[ ™ (M3EC) 7

e

0 bmtet—1 ! | | ! t !
I 2 3 4 > [ 7

— (X~ X,) nm)

Frcure 30. Record from bar arranged to measure static pressure in a detonation
wave in a mixture of equal volumes of acetylene and oxygen.

Figure 30, with the same variables as figure 29, gives the analysis of a plate taken with a
mixture of equal volumes of oxygen and acetylene when the same pressure bar was sealed
into the wall of the explosion tube with its axis at right angles to the axis of the tube, the
pressure end of the bar being flush with the inside surface of the tube; this arrangement
therefore measures the ‘static’ pressure in the detonation wave. The length of the explosion
tube was 12 ft., and the distance from the centre of the pressure bar to the closed end of the
tube was 16in. The record is similar to that shown in figure 29, the main difference being
in the length of the intercept on the horizontal axis of the straight line of closest fit drawn
through the observed points; in this case the length of the intercept corresponds to about
8 usec., compared with about 4-6 usec. in the previous case. This difference is due to the fact
that the force on the pressure end of the bar does not rise instantaneously to its final value,
since the detonation wave takes a finite time to travel across the face of the bar when the
static pressure is being measured ; since the velocity of the detonation wave in a mixture of
equal volumes of oxygen and acetylene is 2:96 x 10° cm./sec., the time taken by the force
on the face of the bar to rise to its constant value is 2-54/2:96 x 10%sec. = 8:6 usec.

Figure 31 gives the (§, X— X)) curve derived from a plate taken under the same conditions
as figure 30, except that the diameter of the pressure bar in this experiment was 0-5in., and
its length was 2 ft. 3 in., so that the time taken by the detonation wave to traverse the diameter
of the bar was 4-8 usec. Comparison of this diagram with the preceding one shows, as one
would expect, that if the length of the bar is the same the errors decrease as the radius of
the bar decreases.

Vol. 240. A. 55
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When (&, t) curves similar to those given in figures 26 to 31 are differentiated, the derived
(p,t) curves show a gradual initial rise followed by oscillations about an approximately
constant value. These effects are shown in figure 32, where 2t'/7} is taken as abscissa and
p/p, as ordinate, p being the pressure given by differentiation of the curves of figure 26 and
bo, the pressure which would be obtained with a distortionless bar.
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Freure 31. Record from a bar arranged to measure static pressure in a detonation
wave in a mixture of equal volumes of acetylene and oxygen.

A Hopkinson bar, used with a very short time-piece, in the way described by Hopkinson,
measures the maximum value of the pressure p. On the present theory, and with a pulse of
the form considered here, it follows that the maximum pressure deduced from the observa-
tions will exceed the true maximum pressure and that the discrepancy will be greater as
the ratio a// increases, i.e. as [ decreases, if @ is constant. Qualitatively, this agrees with the
experimental results of Landon & Quinney (1923), who found that the momentum trapped
in a short time-piece, used with a bar of given diameter, increases as the length of the bar
decreases. The effects to be expected with a pulse of finite duration are discussed below
(subsections (¢) and (d)).

It follows from figures 26, 27 and 32 that if the fluctuations in a (£, ¢) curve observed with
a constant, sustained pressure are smoothed out by drawing the straight line which best fits
the experimental data (excluding the initial, curved portion of the curve), then the average
value, p, of the pressure p deduced in this way will depend on the range of ¢ over which the
average is taken. This can be seen from table 12-4 which gives the values of p/p, for different
ranges of ¢'/37, calculated by finding, by the method of least squares, the straight line of
closest fit through the points corresponding to the values of /e, and ¢'/T; given in table 12-2.
Table 12-4 is useful in that it enables a quantitative estimate to be made of the inaccuracy
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in the value of p when it is deduced by smoothing the observational data; it is clear from the
table that errors up to about 10 %, will occur in the value of p if the average is taken over time
intervals which are too small.
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Ficure 32. (Pressure, time) curves derived from figure 26. p = pressure derived by differen-
tiating the curves of figure 26; p, = pressure in the absence of dispersion.

TABLE 12:4

bar 4 bar B
range of ¢ B range of ¢ B
range of 2¢'/ T, (wsec.) blto (wsec.) blto
1-01 to 1-04 3-87 to 15-5 1-10, 13-4 to 53-6 1-08,
1-06 23-2 1-09, 80-4 1-02;
1-08 31-0 1-03, 107-2 1-00;
110 387 101, — —

(¢) The displacement due to a force of finite duration acting on the pressure end of the bar

Considering next the case of a pressure pulse in which the pressure applied at x = [ rises
instantaneously from zero to a constant value P at time ¢’ = 0 and falls instantaneously from
P to zero at time ¢ = T, the displacement £ at the measuring end can be found by super-
posing the solutions appropriate to the case of a pressure —P applied at time ¢ = 7" on the
solution given in (12-14). The results of calculations on these lines, for bar 4 and for pulses
in which 27"/T; = 0-04, 0-06, 0-08, are given in figure 33; since 7, = 774 usec., the corre-
sponding values of 7" are 15-48, 23-22 and 30-96 usec. respectively. The diagram is plotted
using non-dimensional variables, namely 2¢'/T; as abscissa and the ratio of the value of §
to the maximum value 50 of the displacement £, for a distortionless bar as ordinate; the values
of the ratio of the displacement £, to £, are included to help in estimating the error.

The curves in this diagram show, of course, the two forms of error which have already been
mentioned in discussing the response of the bar to a sustained force applied to the pressure

end. In addition, it is clear, as one would expect, that dispersion gives rise to errors towards
552
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the end of the pulse; here the displacement £ first overshoots the value £, and then oscillates
about a value which is a little greater than £, in the range covered in the diagram. It is
obvious from the diagram that these oscillations at the end of the main pulse are relatively
more important in the case of pulses of short duration involving sudden change of pressure.

The period of the oscillations following the main pulse corresponds to the period of the
oscillation of the (&/e,,#'/T;) curves of figure 26 about the inclined straight line for a dis-
tortionless bar, or the oscillations of the (p/p,, 2t'/T;) curves of figure 32 about the horizontal
straight line for a distortionless bar. Thus, in experiments where the oscillations at the end
of the main pulse are absent, such as the experiments on the pressure in detonation waves
in gaseous mixtures, the period of oscillation of the observed curve around the straight line
of closest fit should agree for a given value of ¢ with the period of the oscillations obtained,
with the same bar, at the end of a sudden pulse.
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Ficure 33. Bar 4 and distortionless bar. (g/éo, 2¢'/T;,) and (go/gAO, 2t’/ 1)
curves for a force of finite duration, 7.

The phenomenon of the oscillations following the main pulse has already been discussed
to some extent in connexion with the comparative response of a parallel-plate unit and a
cylindrical unit measuring radial displacement; when the latter type of unit is used, the
effect is shown very clearly in the photographs of figure 22 and the oscillations persist to
some extent even when the rate of change of pressure is small, as in the case of the impact

of a cone-shaped bullet.
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With a parallel-plate condenser unit, for the reasons given in §11 (¢), these oscillations
do not become prominent unless the pressure pulse is much sharper than that due to the
impact of lead bullets, and figure 34 shows two photographs, taken with bars 1in. diameter
and 6 ft. long, to illustrate this. Figure 344 was obtained in the course of experiments on the
measurement of pressure near a bare cylindrical charge of C.E. ; the diameter of the charge
was 2in. and the axis of the charge was at right angles to the axis of the bar. In this experi-
ment, the pressure end of the bar was in the form of a cone of 30° semi-vertical angle and the
distance from the centre of the charge to the tip of the cone was 3-5in. The value of the
maximum pressure calculated from this record is 1-34 tons/sq.in. Figure 345 was taken when
a steel ball, 0-5in. diameter, was fired at the end of the bar from a smooth-bore pneumatic
gun with a velocity of 182ft./sec.

(a) _ (b)
Ficure 34. Oscillograms showing the oscillations following the main pulse. Pressure bar: length
= 6 ft., diameter = 1 in. Condenser unit: parallel plate type. (a) Pulse due to 1 oz. charge of C.E.
Upper trace: timing wave of period 57-3 usec. Middle trace: amplified output from condenser unit.
Lower trace: datum line. (5) Pulse due to the impact of a steel ball, 0-5 in. diameter. Velocity of
ball = 182 ft./sec. Upper trace: timing wave of period 40-9 usec. Middle trace: amplified output
from condenser unit. Lower trace: datum line.

In the two photographs of figure 34, the main pulse is followed by a tail of high-frequency
oscillations; the tail appears to be composed of a single vibration whose period clearly
decreases as time increases, as one would expect from figure 15, since ¢'/37 is of the order of
1-1 in these records.

The oscillogram of figure 34a was analyzed in order to find the degree of agreement be-
tween the values of the periods of the oscillations in the tail, and the values of 7 deduced from
the group velocity theory (figure 15). The results are summarized in table 12-5, in which the
first half-oscillation, extending from the first minimum in the tail to the adjacent maximum
on the right, is denoted by number 1, and the succeeding half-oscillations to the right by
numbers 2, 3 and 4 respectively.

Remembering that the values of ¢ /47} lie in the region of the (T,/T,, ¢ |31;) curve, where
T,/T, varies very rapidly with #/37;, the agreement between the experimental results
(3rd row) and the results derived from the accurate theory of Pochhammer and Chree
(6th row) is satisfactory. As one would expect, the agreement between the experimental



444 R. M. DAVIES ON A CRITICAL

results and the results deduced from the approximate theory (7th row) of this section is

less good.

TABLE 12-5

[=6ft. =183 cm.; a=0-51in. =1-27 cm.; ¢y = 5-23 x 10° cm.[sec.; 3T, = 350 usec.; T, = 2-42 usec.
half-oscillation number 1 2 3 4
time between max. and min. (usec.) 9-8; 84, 75 6-7,
period of the oscillation (expt.) 81,7, 6-8,T, 63,7, 5:5,T,
¢’ for mid-point of the half-oscillation (usec.) 3805 390 398 4054
¢I5T, 1-08, 1-11, 1-13, 1-15,
T, for this value of #'/4 T, from figure 15:

(i) curve (1) 67T, 617, 57T, 54T,

(ii) curve (la) 55,71, 49T, 43T, 40T,

From figure 33 it follows that if the slope and therefore the pressure is averaged by drawing
the straight line of closest fit through the points observed in an experiment, the result will
be too high and the magnitude of the error will be of the same order as the error in the case
of a sustained pulse (see table 12-4). Atthe same time, at the end of a pulse of finite duration,
£/E, oscillates about a mean value which appears from figure 33 to be a little greater than
unity; this implies that if a parallel plate condenser unit is used to measure the displacement
¢, and if the unit is calibrated from momentum measurements as described in § 5 (¢), then
the observed value of the separation, D, of the plates of the unit will be in error.

To estimate this error and its effect on the measured values of the pressure, consider the
particular case of the first set of readings shown in table 5-1. Assumlng first that the bar is
distortionless, and that, as shown in the table 5 = 2:28 x 1073 cm., V=0 0525V, E, =193V,
equation (5-16a) then gives D = 5:60 x 10~ 2cm. Assuming next that dlspersmn modifies
the (£/€,, 2¢'|T,) curves as shown in figure 33 and that the duration of the pulse due to the
impact of the ball is such that 27/, = 0-04, this diagram shows that the mean value of ¢/£,
at the end of the pulse is about 1-03. This does not affect the value of £ used in equation
(516a) since this value is deduced from the momentum communicated to the bar by the
impact of the ball; on the other hand, it does affect the total change in capacity, 7, of
the bar condenser and the maximum p.d., V, across R, and C; of figure 4. 7 is, in fact,
proportlonal to the average value of § at the end of the pulse in figure 33 (see equation
(5-8) and V in turn, is proportional to # (see equation (5-54)). Thus the value of 4 appro-
priate to the present case is 0-0525 x 1-03 = 0-05408 V, and substituting this value of 78
together with the values of £ and E, already given, in equation (5-164), it is found that
D = 551 x1072cm., compared w1th its previous value of 5:60 x 10~2cm. Thus curve (a)
of figure 33 leads to a value of D which is about 29, less than the value corresponding to
the case of a distortionless bar, and since displacement and pressure are proportional to D?
(see equation (5:100)), other quantities remaining unchanged, it follows that the values
of £ and p deduced from the lower value of D will be about 4 9, too small. The average value
of the pressure deduced from the slope of curve (a) of figure 33 is about 10 9, higher than the
value deduced from the slope of the curve for a distortionless bar; thus, when a pressure
measurement is combined with a calibration experiment, the net result, on our present
assumptions, is to give a value of the pressure which is about 6 9, greater than the true value.
The same considerations will apply to some extent in every case, and in calibration experi-
ments, such as those summarized in table 5-1, the scatter of the values of D is undoubtedly
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due partly to the effect which has just been discussed; in addition, the errors due to the
alteration of the slope of the (£, ¢) curves, caused by dispersion, are partly neutralized when
the momentum method is used to find the value of the separation D of the plates of a parallel
plate condenser unit.

(d) Summary of the general conclusions

It will be convenient at this point to summarize the results of the experiments and the
discussion given in this and the preceding sections. The summary will be restricted to the
performance of the parallel plate type of condenser unit; the behaviour of the two types of
cylindrical units can be deduced from that of the parallel plate unit by means of the discus-
sion already given in the concluding part of § 11. At the same time, no attempt is made here
to discuss the performance of the bar when used mechanically, although some of the state-
ments given below will obviously apply to this case. -

1. The pressure bar is incapable of accurate measurement of pressures which are subject
to rapid changes in times of the order of 1 usec.

2. When the force applied to the pressure end of the bar changes instantaneously from
zero to a finite value, the pressure deduced from the displacement at the measuring end
takes a finite time (after the arrival of the wave) to rise to an approximately constant value.
This time depends on Poisson’s ratio and on the radius and length of the bar; when o = 0-29,
with a bar 0-5in. diameter, 2 ft. 3in. long, the time is of the order of 2 usec. ; with a bar 1 in.
diameter, 2ft. 2in. long it is of the order of 3 usec., and with a bar 1 in. diameter, 6 ft. long,
about 5 usec.

3. Similar considerations hold when the force at the pressure end is instantaneously
reduced from a finite value to zero.

4. It follows that if the pressure to be measured consists of a force which rises instan-
taneously from zero to a finite value, which is maintained for a time 7", and then drops
instantaneously to zero, no pretence at accuracy can be made if 7" is less than 4 usec. with
a bar 0-5in. diameter, 2ft. 3in. long, less than 6 usec. with a bar 1in. diameter, 2ft. 2in.
long, and less than 10 usec. with a bar 1in. diameter, 6 ft. long.

5. With constant or slowly varying forces, the pressure derived from the displacement at
the measuring end fluctuates slightly about its true value; these fluctuations decrease, and
the accuracy increases, as 7" increases. Apart from the initial and final portions of the pulse,
an accuracy of about 2 9, can be obtained theoretically by averaging, if 7" is not less than
about six times the time taken by the pressure (deduced from the displacement at the
measuring end) to reach its final value.

(e) The accuracy of the experiments

In addition to these errors which are inherent in the pressure bar itself, each measurement
of pressure with the apparatus described in this paper is subject to errors due to inaccuracies
in the measurement of (i) the record on the photographic plate, (ii) the electrical quantities
—p.d.’s, resistances, capacities and frequency—involved, (iii) the separation, D, of the
plates of the condenser unit, when a parallel plate unit is used, or the capacity per unit
length when either of the cylindrical units is used.

(i) The microscope used to measure the oscillograms reads directly to 0-01 mm., and in
most cases, two independent settings of the microscope on a given point on a trace agree to
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within 0-005 mm. In the case of the record shown in figure 12, an uncertainty of + 0-002; mm.
in the measured values of the vertical displacement leads to an uncertainty in the value of p
of about +1 to +2-59, in the initial stages of the record and about +0-5 9, in the region
of maximum pressure. It should be pointed out that the scatter of the points actually
measured in figure 12 about the curve marked ‘¢ (experiment) ’ is much greater than the error
in the measurement of the plate and it is undoubtedly caused by dispersion in the bar; for
example, in the case of the point at ¢ = 13-20usec., the vertical distance between the
measured point and the curve is equivalent to 0-1 mm. on the photographic plate, i.e. to
one-tenth of a revolution of the screw of the microscope.

(ii) The uncertainty in the measured values of the electrical quantities does not usually
exceed -+ 0-5 %,.

(iii) With a parallel plate condenser unit, £ and p are proportional to D2, other quantities
remaining constant; under these conditions, the percentage error in p is therefore twice the
percentage error in D. The error in the value of D is caused partly by the distortion of the
pressure pulse in the bar and partly by errors in the measurement of the records and the
electrical quantities. Table 5-1 shows that the uncertainty in D is about 4-1-5 %,, when the
diameter of the pressure bar is 1in. Since all sources of error contribute to the uncertainty in
the measured value of D, it seems legitimate to conclude that twice the uncertainty in D,
i.e. + 39 is a fair measure of the over-all accuracy of a pressure measurement in a given
experiment, provided, of course, that the pressure does not vary too rapidly with time.

Measurement of the pressure due to bullet impacts and the pressure in detonation waves
in gaseous mixtures confirms that the over-all error is of the order of the figure just given and
that normally it is less than this.

The results shown in figure 12 are typical of those obtained with bullet impacts. Here the
agreement between the experimental and theoretical (p, £) curves is reasonably satisfactory,
since it is difficult to be certain about the accuracy of the initial and final portions of either
curve. The difference between the two curves in their middle sections is within the limits
stated above and the maximum pressures agree to within 2-5 9.

The work described in this paper was carried out between 1939 and 1943 at the
Engineering Laboratory, Cambridge, at the suggestion of Sir Geoffrey Taylor, to whom I am
greatly indebted for advice and help throughout the course of the work.

I am also indebted to the University College of Wales, Aberystwyth, for leave of absence
from my post; to the Trustees of the Leverhulme Research Fellowships for the grant of a
Fellowship for the period 1939 to 1941; to the Research and Experiments Department of
the Ministry of Home Security, to whom I was seconded from 1941 to 1943, for permission
to publish the work; to Professors Sir Charles Inglis, Sir B. Melville Jones and Sir Lawrence
Bragg for laboratory facilities and to Mr W. E. Thompson for his help in the construction

of apparatus.
APPENDIX 1

The effect of radial displacements on the response of a cylindrical condenser unit

When a longitudinal elastic wave is propagated along a bar, it gives rise to both longi-
tudinal and radial displacements, a longitudinal wave of compression being accompanied
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by radial expansion and a longitudinal wave of extension by radial contraction; the radial
displacement ¢ on the cylindrical surface of the bar is given by equation (1-3): { = gap/E.
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Ficure 35. The variation of the longitudinal and radial displacements in a cylindrical
condenser unit with a square-topped pressure pulse of duration 7.

Consider a pressure bar of radius ¢ and take the axis of the bar as the axis of x; suppose
that the cylindrical condenser unit consists of an insulated cylinder of internal radius &’
coaxal with the earthed pressure bar as shown in the inset of figure 35. Let the origin of x
be taken at O, the point of intersection of the axis of x with the cross-section passing through
the inner end of the insulated cylinder; let the abscissa of the end 4 of the bar be L.
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In order to find the net change y in the capacity of this condenser due to a pressure pulse,
it will be assumed, for simplicity, that a square-topped pulse of compression of duration 7"
is propagated along the bar in the positive direction of #, so that the pressure p at a given
point in the bar rises instantaneously from zero to a value §, say, and remains at this value
for time 7", when it falls instantaneously to zero.

Let the origin of time be taken as the instant at which this pulse of compression arrives
at the point O. As the pulse travels in the positive direction of «, it gives rise to a radial expan-
sion { = 2 — gap/E. When it arrives at 4, it is reflected as a pulse of extension which travels
in the negative direction of x and causes a radial contraction of amount {. The resultant
radial displacement { at a point in the portion O4 of the bar at time ¢is found by superposing
the separate displacements due to the incident and the reflected waves; figure 35 shows the
values of { plotted as ordinate against x as abscissa at different values of ¢ in the interval
0<¢<(T"+2L¢,), assuming that 77> 2L/c,.

From equation (1-2), it follows that the longitudinal displacement £ of the end 4 of the
bar at time ¢ is given here by the equations

0<t<Lc, £=0,
Licy<t<(T'+Lle), &= 2p(t—Ljcy)lpcy (A1)
1> (T'+Lfcy), £ = 2T |pey.

The relationship between £ and ¢ is shown in figure 35.
Let 7, be the increase in the capacity of the bar condenser at time ¢ due to the longitudinal

displacement £, and ¥, the increase in capacity at the same instant, due to the radial dis-
placement {. Assuming that end-effects are unchanged by the motion of the surfaces of the
bar, y, = k£ where £k, the capacity per unit length of the bar condenser, is given by the

equation
02416 10
"~ log (d’/a) ~ 181In (d’/a) (4 jem.). (A1-2)
If the radius of the inner conductor of the condenser increases by the amount 4a, it follows
from this equation that the increase 4% in £ is

_ kda al2

If the radius of the bar has been increased by the radial displacement { over a length L’
of the common portion O4 of figure 35 at time £, then

v, = L'Ak = 1-8L'k/a. (A-1-4)

Ada

a

(A-1-3)

The total change in capacity, y, of the condenser unit at time ¢ is therefore
Y =7+, = k(E+1-8kL'{[a). (A-1-3)

The value of y corresponding to a given value of # can thus be calculated from these equa-
tions, the appropriate value of L’ being found from figure 35.

The full-line curve in figure 36 shows the results of numerical calculations for a condenser
consisting of an insulated cylinder of internal diameter 1i;in. and a bar 1in. diameter,
the overlap L being 1-3cm. In this curve, y is plotted as ordinate against ¢ as abscissa, and
for the purpose of calculation, it has been assumed that ¢ = 0-29, p = 7-85g./cu.cm.,
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¢o = 523 x 10°cm. [sec., and p = 5 x 108 dynes/sq.cm., 7" = 30 gsec., corresponding approxi-
mately to the impact of a lead bullet 0-36 in. long, moving with a velocity of 1000 ft./sec.
The value of (L/c,) is 25 usec., and the (y,,¢) curve consists of the inclined straight line
joining the points (2-5,0) and (32-5, 6-7,) when ¢ lies between 2-5 and 32-5 usec., and the
horizontal straight line of ordinate 6-7, when ¢ exceeds 32-5 usec.
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Frcure 36. The net response of a cylindrical condenser unit to a square-topped pulse.

The resultant radial displacement in the overlap L differs from zero only in the time
intervals 0 to 5 usec. and 30 to 35 usec., and the diagram shows that in these intervals, the
contribution of y, to y is apprec1able, even though the value of C is only 8:56 x 10~%cm.,
whereas the maximum displacement £ of the end of the bar is 7-32 x 10~3 cm. Clearly, a
cylindrical condenser unit can only give unambiguous results when the clearance (a’ —a)
is fairly large and then only when the unit is used with pulses whose duration 7" is sufficiently
long to make (2L/c,) small in comparison with 7”. It must be remembered in this connexion
that, in practice, L cannot be decreased indefinitely in an attempt to satisfy the latter con-
dition, since an indeterminate factor, due to the variation of the end-correction with the
displacement &, enters into the theory given in § 5 when L is too small.

In estimating the effect of the radial displacement in any given 1nstance, it is useful to
find the ratio of the maximum values 7, and §, of the changes in capacity y, and y, respectively;
7, is the value of y, when L’ = L, whilst §, is the value of y, when £ = £=2p T’ |pcy. From
equations (1-3) and (A-1-5), it can be shown that ‘

7, _0-9kLo _ 5kL

—_ -7 ’ 1
5" 9, T T x 10 (A-1-6)

with the values assumed above for ¢ and c,.



450 R. M. DAVIES ON A CRITICAL

In a condenser unit which was designed to measure the pressure due to underwater
explosions, 24’ = 1-625in. = 4:128 cm., 2a¢ = 1-5in. = 3-81cm., L = $in. = 0-95cm.; from
equation (A-1-2), k£ = 6-94 yuF /cm. = 6-25e.s.u./cm. If 7" = 300 usec., then from equation
(A-1-6), 7,/#, = 0-01, whilst (2L/c,) = 3-6 usec. In this case 7, and consequently the vertical
deflexion on the oscillogram, will be liable to an error of about 1 9%, in the first and the last
3-6 usec. of the record. The effect of an error of this magnitude on the performance of this
particular unit can be neglected, since all measurements made with the unit will be subject,
in the initial and final portions of the pressure pulse at any rate, to a greater error than this,
by reason of the distortion of the pulse by the pressure bar (see §§ 10 to 12).

APPENDIX 2

A more exact theory of the condenser feed-unit circuit

In the discussion of the circuit of the condenser feed-unit given in § 5, it was assumed that
the shunt resistance, R, of figure 4 was infinite; this appendix deals with the behaviour of
the circuit when this restriction is removed. It will be assumed, as in § 5, that the circuit
can be regarded as being charged by the polarizing battery to a potential £, at time ¢ = 0,
and isolated from it during the motion of the measuring end of the bar, i.e. during the
interval 0<<i<< 7",

With the notation used previously for the electrical quantities, when ¢ = 0, C = C|, the
charge on C'is 4-C} E, and on C,, 4+-C,E,; C; is uncharged, since it is in parallel with the
resistance R, and the p.d. across R; and C; is zero.

At time ¢ (0<¢<T"), C= C,+7, and the p.d. across R, and C; is equal to V, and, if
+¢, +q, +¢, be the charges on the condensers C, C; and C; respectively, and ¢, the current
through the resistance R, then the circuit equations are

=4 = do= g+ (A-2:1)
V = RSiS = QS/CS) (A.2'2)
9/C = ¢,/C;+V, (A-2:3)
and, since the loss of charge of C'is equal to the gain of charge of C,, in time ¢,
C\E,—q=qy,—C,E,. (A-2+4)
Differentiating equation (A-2-3), then

ldg qdC 1dq  dV o

ca ca-cata (A-2:5)

Substituting in this equation the values of ¢, ¢ and ¢, given in equations (A-2-1), (A-2-2)
and (A-2-4), the following differential equation for V is obtained:
(C _'__QCL)EZ_V:_]_{}__]_iéq Eb(Cl+CO) Coég.
STCH+Cy) dt \Ry (C+Cy)? di (C+Cy)?* dt
Since C, is of order 10° uul, whilst C'and C, are of order 10 gu¥, C and C; will be neglected
in comparison with C; and this equation written in the form '

v (1 dC ic
(C,;—C)%—F(R;Jr;,;) v=—E,"%. (A-27)

|y —— (A-2-6)
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Remembering that C = C, 4+, %,g = %,

dy dV v, v
(B, +V) T +5 7+ (C+C) TR = (A-2-8)

this equation may be rewritten

Thus d[y(V+E,)] ——(C,+C,) dV—VdR,,

and, since y = V = 0 at time ¢ = 0, on integration,

(€40 { NG }

E+v |'"TR(C+C)V

(A-2-9)

Writing V = ( f tVa’t) / ¢ for the average value of V in the time interval (0, ¢), this equation
0 .

becomes

_(Cl+Cs) v ¢ 7} (A'Q'IO)

1+
E,+V { R(C,+C)V

When R, is infinite, the value of y given by this equation agrees, as it should, with the
valued derived from equation (5-4) when C; is much greater than C and C,.

The correction for the leakage through the shunt resistance R, is thus given by the term
R Clt ol 5 in equation (A-2-10). Normally in these experiments the (7, t) curve does not
differ greatly from a straight line passing through the origin and inclined to the ¥ and ¢ axes,
so that ¥V and V are of the same order. The magnitude of the correction term in question is
thus effectively determined by the ratio of the time ¢ to the time-constant R (C,+C,), and
for accurate work it is therefore essential either to allow for leakage by evaluating the
correction term, or to make the product R (C,+C;) large in comparison with the duration
T" of the pressure pulse. In practice, it is so easy to satisfy the condition R (C,+C,)=>T",
and, at the same time, ensure sufficient over-all sensitivity of the apparatus, that this procedure
has been adopted in this series of experiments.

APPENDIX 3

The propagation of a pulse of flexural waves in a cylindrical bar

If the forces applied to the pressure end of a bar are unsymmetrical with respect to the
axis of the bar, the forces are equivalent to a longitudinal force along the axis, together with
a couple; the longitudinal force gives rise to a stress pulse composed of longitudinal or
extensional waves and the couple to a pulse consisting of flexural or transverse waves. Since
a cylindrical condenser unit designed to measure the longitudinal displacement of the
measuring end of a bar can respond to flexural waves, it is important to find the conditions
under which the oscillograms given by this type of condenser unit are free from the effects
of flexural waves. This appendix deals with the propagation of a flexural wave pulse from
the standpoint of the method of stationary phase, following the lines of the discussion given
in §11 (b) for extensional wave pulses.

The differential equations, which have been used for describing flexural vibrations in
a bar, fall into two classes—the exact equations, due to Pochhammer and to Chree, derived

56-3
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from the general equations of the theory of elasticity, and the simpler less exact equations,
derived in a more elementary manner from a consideration of the stresses in the bar. The
former have been summarized by Love (1934, §202), and calculations, based on these
equations, giving the phase velocity of flexural waves for different wave-lengths, have been
published recently by Hudson (1943). The simpler equations, and the assumptions on which
they are based, have been summarized by Timoshenko (1929, §§ 40 to 43); more recently,
a very thorough discussion of the problem has been given by Prescott (1942).

Considering a cylindrical bar of radius a, let the axis of the bar (assumed straight when in
equilibrium) be taken as the axis of x, and let the direction of the displacement of the bar in
flexural or transverse vibration be taken as the axis of y. Assuming that the bar is uniform
and that the displacements are small, let

u, = flexural displacement at time # at a cross-section of abscissa x.

¢’y ¢, = phase and group velocities respectively of flexural waves of wave-length 4,

period 7 in the bar.
K’ = a/2 = radius of gyration of the cross-section of the bar about an axis through the

centre of gravity, perpendicular to the xy plane.
R’ = a non-dimensional constant, depending on the shape of the cross-section of the bar.

For a circular cross-section, R" = 10/9.

¢=RE/u=2R(1+0).

y=2n/d; 0= 2n|T = y¢’ = 2mc¢’|A.

The simplest theory of the flexural vibrations of a bar assumes that the displacement of
an element of the bar consists solely of translation parallel to Oy; the differential equation
may be written in the form

R e

*u, 02
i (A-3-1)
For sinusoidal waves of unit amplitude, «, will be of the form
uy . ei(yx+a)t)’ <A32)

and, substituting in equation (A-3-1), it is easy to show that the phase velocity ¢’ of sinusoidal
flexural waves of wave-length 4 is given by the equation

¢ =y K = lc/?—a. (A-3-3)

The corresponding value of the group velocity, c,, given by the equation

¢ ¢, edd]a) 3.
¢ ¢ Ad(ad)’ (A3:4)
is here ¢, = 2¢' = 2mcyald. (A-3-5)

" This théory leads to results which are physically absurd, namely that a wave-packet
consisting of waves of infinitely short wave-lengths will be propagated with an infinite
velocity, and that a wave-packet consisting of waves of infinitely long wave-lengths will

be propagated with an infinitesimally small velocity.
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When the elements of the bar are considered to undergo rotation (without distortion) in
addition to lateral displacement, the differential equation (A-3-1) is modified to the form
(due apparently to Rayleigh (1894, p. 294))

34u 0*u 0%u
o VU (Ol
ot K gagpT e

g K? 0. (A-3-6)

The effect of the rotation of the elements of the bar is represented by the term
— K20%, [0x? 02
Proceeding as before, it may be shown that the phase and group velocities derived from

this equation are given by

, o | , o ‘ 1
 — =———— ¢ = ]__I_
7y G T @ A8
J+72) Jo+2 2){ | +A2} (A-3-7)

When a/4 is small, the values of ¢’ and ¢ given by this equation become equal to those
given in equation (A-3-6); when a/4 is large, both ¢’ and ¢, approach the value ¢, asymptotic-
ally, so that a wave-packet consisting of waves of infinitely short wave-lengths will be pro-
pagated not with infinite velocity but with a velocity equal to the velocity of extensional

waves of infinite wave-length.

When the shearing, the rotation and the lateral displacements of the elements of the bar
are taken into account, the differential equation takes the form given by Timoshenko
(1921) and by Prescott (1942):

94
dx

32u 34u eK?2 34u

S R T K2(1+€)a et 2 P P

u,
R = 0. (A-3-8)
This equation differs from equation (A-3:7) by the terms involving the non-dimensional
parameter ¢ as a factor. ‘
It can be shown that the phase and group velocities derived from equation (A-3-8) are
given by the relationships
& 42
piteg = pate
6 _ ¢ 1 (A-3-9)
o Co 1+ — ¢'?
1+—5 1 (1 +e— 2" )

S

For a given value of a/4, the first of these equations becomes a quadratic in ¢?/c3; the two
roots are real, the larger giving a value of ¢’ which exceeds ¢, except in the limiting case
where a/4 o0, whilst the smaller gives a value of ¢’ which is always less than ¢,. The larger
root does not appear to have any physical significance under ordinary conditions of experi-
ment (cf. Prescott 1942), and moreover the exact theory shows that ¢/c, is a single-valued
function of a/4; this root will therefore be ignored, and, with this restriction, it follows that
the values of ¢'/¢, and ¢;/c, given by equation (A:3-9) reduce to those given by equations
(A-3-3) and (A-3-5) when a/4 is small. When a/4 is large, ¢/c, and c,/c, approach the value
1/, /e asymptotically. ,
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Assuming that ¢ = 0-29, the variation of ¢’/¢, and ¢,/c, with a/4 given by equations
(A-3-3), (A-3-5), (A-3-7) and (A-3-9) is shown graphically in figures 37 and 38; the values
given by equations (A-3-3) and (A-3-5) are shown in the broken-line curve labelled  Flexural
waves (elementary theory)’, those given by equation (A-3-7) in the chain-dotted curve
labelled ‘Flexural waves (Rayleigh theory)’, and those derived from equation (A-3-9) by
the points marked by crosses. These diagrams also show the values of ¢'/c, and ¢,/c, deduced
from the data given by Hudson ; these values are given by the curve labelled ‘ Flexural waves
(exact theory)’ and, for purposes of comparison, the values of ¢/¢, and ¢,/c,, for extensional
waves (1st mode, exact theory) have beenincluded in the curves marked ‘ Extensional waves’.
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Ficure 37. Phase velocity, ¢, ¢’ of extensional and flexural waves
of wave-length 4 in cylindrical bars of radius a.

‘The curves given in these diagrams show a number of points of interest. When a/4 is
small, the elementary theory gives the correct result. As a/4 increases from zero, the values
of ¢’[¢y and ¢;/c, given by the elementary theory and by the Rayleigh theory are greater
than those given by the exact theory. When a/4 becomes large, the phase and group velocities
become infinite on the elementary theory and equal to ¢, on the Rayleigh theory, whereas
on the exact theory they become equal to ¢, the velocity of the Rayleigh surface waves.
One interesting feature of the curves is the degree of agreement between the values of ¢/c,
and c,/c, given by the exact theory and by the Timoshenko theory, and even when the error
is a maximum, i.e. when a/4 is very large, the error of the Timoshenko theory is not excessive,
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since the limiting values of ¢'/c, and ¢} /c, (when ¢ = 0-29) are 0-5764 in the exact theory and
0-5906 in the Timoshenko theory. This feature of the Timoshenko theory justifies its use in
dealing with problems such as the determination of the frequency of lateral vibrations of
bars, where the exact theory cannot be employed because of its complexity (see, for example,

Davies 1937).
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Ficure 38. Group velocity, ¢, ¢, of extensional and flexural waves
of wave-length A in cylindrical bars of radius a.

For the purpose of discussing the propagation of a pulse of flexural vibrations, consider
a bar which is stressed initially so that the flexural displacement is zero everywhere except
at a certain cross-section where it is infinite; this cross-section will be taken as the origin of .
If the stress is released at time ¢ = 0, the period 7, of the dominant group in the disturbance
at a cross-section of abscissa x at time ¢ can be deduced by group-velocity methods. As in
§11 (b), it is convenient to take the non-dimensional ratio ¢ /37} as the independent variable
and the non-dimensional ratio 7/, as the dependent variable, 7, and 37 being equal to
the times taken by an extensional wave of infinite wave-length to traverse the distances

a and x respectively. Since
' 7;1 4 ¢ T (A-3:10)

the values of these non-dimensional variables can be derived from the curves of figures 37

and 38.
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The (7,/T,,t'[37T;) curves deduced in this way are shown in figure 39. According to the
elementary theory, T,/T, = A*/na?, ' [§ T, = A[2ma; the (1,/T,, ¢ [371;) curve is thus a para-
bola passing through the point #'/§7, = 0 and symmetrical about the axis of 7,/7,, through
this point. This implies, as has already been pointed out, that wave-packets consisting of
infinitely short waves arrive at the cross-section of abscissa x at the instant at which the
disturbance departs from the origin. As a/4 decreases, the values of 7,/T;, and ¢ /37|, both
increase, and for large values of ¢/4 (outside the range of figure 39) the curve given by the
elementary theory coincides with the curves given by the more exact theories.
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Ficure 39. The periods, T, of the dominant groups in a bar of length /, radius a, at a point abscissa
¥, at the time ¢ after the departure of an infinitely thin pulse from the origin. T = a/co, 3Ty = x/e,.
X, values derived from Timoshenko’s theory.

According to the curve given by the Rayleigh theory, wave-packets consisting of infinitely
short flexural waves take the same time to travel through a given distance as wave-packets
composed of infinitely long extensional waves. As T,/T, increases (or a//A decreases) ¢'[$7
decreases until it reaches a minimum value at #'/37; = 0-92, when 7,/T, is-about 3 and a/4
is about 0-8; beyond this point #'/47; decreases as 7,/T, increases. Thus, according to this

‘theory, when an infinitely intense flexural disturbance initially concentrated at the origin
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is released, the first components to arrive at a given point do so at time ¢ = 0-927;/2; their
period is about 37, and their wave-length about 1-254. In the interval between the arrival
of these components and time ¢ = Ty/2, two groups of different wave-lengths and period
arrive simultaneously at each instant; finally when ¢ exceeds 7/2, only one group arrives
at a given instant, the period and the wave-length of the group increasing as ¢’ increases.

Considering the results of the exact theory, it is clear that the faster components, originating
in an infinitely intense disturbance at the origin, arrive at the cross-section of abscissa x at
time ¢’ = 1-5647;,/2; the period of these components is 5-297, and their wave-length is equal
to 2-7a. Between this value of ¢ and ¢’ = 1-73,7,/2, two groups of different wave-lengths
and periods arrive simultaneously at each value of ¢'; at ¢’ = 1-73,7,/2, the Rayleigh surface
waves and waves of period 17-37, arrive simultaneously. When ¢ exceeds 1:73;7;/2, only
one group will arrive at each instant.

It is clear that the elementary theory and the Rayleigh theory give results which are very
wide of the truth, and any solutions based on these theories of problems of the action of
transient flexural stresses on bars are unlikely to be accurate unless it happens that the
disturbances are such that waves of short wave-length are unimportant. Again, it is inter-
esting to notice that the results derived from the Timoshenko theory are in excellent agree-
ment with those deduced from the exact theory.

As far as the present experiments are concerned, the main interest of the curves of figure
39 is that they show that, on the exact theory, no flexural displacements will occur at
the cross-section of abscissa x until ¢ >1-56413/2, i.e. ¢ >>1-564x/c,; remembering that
the record in a given experiment begins when extensional displacements of infinite wave-
lengths arrive at the cross-section, i.e. when ¢’ = T;/2 = x/¢,, it follows that displacements
due to flexural waves will not appear on the record until a time 0-568x/c, after the beginning
of the record. The length of the shortest bar used in the present series of experiments was
2ft. 2in. = 66:0,cm.; assuming that ¢, = 5-26 x 10° cm./sec., 0-568x/c, = 71-3, usec., and
since the duration of the pulses measured with a bar of this length was usually of order
50 usec., the record would normally be free from effects due to flexural waves.
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FIGUre 10. Oscillogram of a pulse due to the impact of a bullet. Pressure bar: length = 2 ft. 2 in.,
diameter = 1 in. Condenser unit: parallel-plate type. Velocity of bullet = 998 ft./sec. Upper trace:
timing wave of period 40-3, usec. Middle trace: amplified p.d. from condenser unit. Lower trace:
datum line.



Ficure 11. Oscillogram showing the discontinuous motion of the measuring end of a bar, caused
by the impact of a steel ball on the pressure end. Pressure bar: length = 3 ft. 9% in., diameter = 1§ 1n.
Condenser unit: parallel-plate type. Upper trace: amplified p.d. from condenser unit. Lower trace:
timing wave of period 435 usec.



FIGURE 22. Oscillograms of pulses due to the impact of bullets. Pressure bar: length = 6 {t., dia-
meter = 1 in. Condenser unit: cylindrical type, measuring radial displacement. Period of timing

wave = 46+5 usec.

(a) (0) (¢)
type of bullet round-nosed round-nosed cone-shaped
velocity of bullet (ft./sec.) 1135 1171 1350

distance of condenser unit from pressurc end of bar (cm.) 115 35 115



Ficure 28. Oscillogram of the pulse due to the Pitot pressure in a detonation wave in a mixture of
air, oxygen and hydrogen. Pressure bar: length = 2 ft. 2 in., diameter = 1 in. Condenser unit:
parallel-plate type. Upper trace: timing wave, period = 41 usec. Middle trace: amplified p.d.

from condenser unit. Lower trace: datum line.



(a)

Ficure 34. Oscillograms showing the oscillations following the main pulse. Pressure bar: length
= 6 ft., diameter = 1 in. Condenser unit: parallel plate type. () Pulse due to 1 oz. charge of C.E.
Upper trace: timing wave of period 57-3 usec. Middle trace: amplified output from condenser unit.
Lower trace: datum line. (b) Pulse due to the impact of a steel ball, 0-5 in. diameter. Velocity of

ball = 182 ft./sec. Upper trace: timing wave of period 40-9 usec. Middle trace: amplified output
from condenser unit. Lower trace: datum line.




